Switching to nonhyperbolic cycles from codim-2 bifurcations of equilibria in DDEs

M.M. Bosschaert^{*}, S.G. Janssens, Yu.A. Kuznetsov^{**}

*Department of Mathematics, Hasselt University, Diepenbeek, Belgium.

**Department of Mathematics, Utrecht University, Utrecht, The Netherlands and Department of

Applied Mathematics, University of Twente, Enschede, The Netherlands.

<u>Summary</u>. Using the framework of dual semigroups, the existence of a finite dimensional smooth center manifold for DDEs can be rigorously established [1]. This makes it is possible to apply the normalization method for local bifurcations of ODEs [2] to DDEs. Recently, the critical normal form coefficients for all five codimension 2 bifurcation of equilibria in generic DDEs have been derived [7] and implemented into the Octave/Matlab package DDE-BifTool [5]. We generalize a center manifold theorem from [1] to generic parameter-dependent DDEs, covering the cases where the critical equilibrium can disappear. It allows us to initialize the continuation of codimension 1 equilibrium and nonhyperbolic cycle bifurcations in generic DDEs where nonhyperbolic cycles could originate. The obtained expressions have been implemented in DDE-BifTool and tested on various models.

Parameter-dependent normalization

Consider the parameter-dependent delay differential equation (DDE) for $x(t) \in \mathbb{R}^n$ of the form

$$\begin{cases} \dot{x}(t) = f(x_t, \alpha), \\ x_0 = \phi, \end{cases}$$
(1)

where $x_t(\theta) = x(t + \theta)$, with $\theta \in [-h, 0]$, represents the solution in the past and $\alpha \in \mathbb{R}^m$ the parameters. Here f is a smooth map from the Banach space $X = C([-h, 0], \mathbb{R}^n)$ into \mathbb{R}^n and h > 0 is assumed to be finite. We assume that there are finitely many constant delays $0 = \tau_0 < \tau_1 < \cdots < \tau_r = h$. Solutions to (1) define a semiflow and are in one-to-one correspondence to solutions of an *abstract integral equation* [1]. Let $\varphi_0 \equiv 0 \in X$ at $\alpha_0 = 0 \in \mathbb{R}^m$ be a equilibrium of (1). Suppose that the generator A of the linear part T(t) of the semiflow near the equilibrium at $\alpha = 0$ has n_c eigenvalues on the imaginary axis. Let X_0 be the finite dimensional eigenspace corresponding to these eigenvalues. Then there exists a locally invariant parameter-dependent center manifold $W_{loc}(\alpha) \subset X$ that is tangent at $\alpha = 0$ to $X_0(\alpha)$ on which the solutions satisfy the abstract ODE

$$\dot{u}(t) = j^{-1} (A^{\odot*} j u(t) + (D_2 f(0, 0)\alpha) r^{\odot*} + R(u(t), \alpha)).$$
(2)

Let X^{\odot} be the subspace of the dual space X^* on which the adjoint semigroup T^* is strongly continuous. Then $T^{\odot*}$ is the adjoint semigroup of $T^{\odot} := T^*|_{X^{\odot}}$ and $A^{\odot*}$ denotes the generator of the semigroup $T^{\odot*}$. The nonlinearity $R: X \times \mathbb{R}^m \to X^{\odot*}$ in this equation (2) is defined by the nonlinear terms of f via the natural injection and $j: X \to X^{\odot*}$. Finally, $D_2 f(0,0)$ represents the derivative with respect to the parameters and $r^{\odot*} = (I,0)$ if we identify $X^{\odot*}$ with $\mathbb{R}^n \times L^{\infty}([-h,0],\mathbb{R}^n)$. Let y(t) be the projection of u(t) onto X_0 . Since X_0 is spanned by some basis Φ of (generalized) eigenvectors, we can express y(t) uniquely relative to Φ . The corresponding coordinate vector z(t) of y(t) satisfies some ODE that is smoothly equivalent to the normal form

$$\dot{z} = G(z,\beta) = \sum_{|\nu|=1}^{N} \sum_{|\mu|=0}^{M} \frac{1}{\nu!\mu!} g_{\nu\mu} z^{\nu} \beta^{\mu} + \mathcal{O}(||z||^{N+1} ||\beta||^{M+1}),$$
(3)

with unknown normal form coefficients $g_{\nu\mu} \in \mathbb{R}^{n_c}$ and parameters β . Here ν and μ are multi-indices of length n and m respectively. The series is supposed to be truncated after some sufficiently high order N and M. The nonlinearity can expanded by

$$R(u,\alpha) = \sum_{j=1}^{N} \sum_{k=1}^{M} \frac{1}{j!k!} D_{2}^{k} D_{1}^{j} f(0,0) (\underbrace{u,\ldots,u}_{\alpha,\ldots,\alpha}, \underbrace{\alpha,\ldots\alpha}_{\alpha,\ldots,\alpha}) r^{\odot*},$$
(4)

$$j \text{ times}$$
 $k \text{ times}$

where $D_2^k D_1^j f(0,0)(\underbrace{u,\ldots,u}, \alpha,\ldots \alpha)$ is the *j*th order Fréchet derivative of *f* with respect to its first argument and the *k*th order derivative of *f* with respect to its second argument evaluated at the point $(0,0) \in X \times \mathbb{R}^m$. Let $\mathcal{H} : V \subset \mathbb{R}^{n_c} \times \mathbb{R}^m \to X$ be a smooth mapping with image $\mathcal{W}_{loc}(\alpha)$. Then \mathcal{H} admits the expansion

$$\mathcal{H}(z,\beta) = \sum_{|\nu|=1}^{N} \sum_{|\mu|=0}^{M} \frac{1}{\nu!\mu!} H_{\nu\mu} z^{\nu} \beta^{\mu} + \mathcal{O}(\|z\|^{N+1} \|\beta\|^{M+1}).$$
(5)

The invariance of the local center manifold $\mathcal{W}_{loc}(\alpha)$ implies the relation $u(t) = \mathcal{H}(z(t), \beta)$. Differentiating both sides of this relation with respect to time yields the *homological equation*

$$A^{\odot*}j\mathcal{H}(z,\beta) + r^{\odot*}(D_2f(0,0)\alpha) + R(\mathcal{H}(z,\beta),\alpha) = j(D_z\mathcal{H}(z,\beta)\dot{z}).$$
(6)

To relate the parameters α to the parameters β , we define the mapping $\alpha = K(\beta)$. We expand K as

$$K(\beta) = \sum_{|\mu|=1}^{N} \frac{1}{\mu!} K_{\mu} \beta^{\mu}.$$
(7)

Substituting (3), (5) and (7) into (6) and equating coefficients of the same order in z and β , one can solve recursively for the unknown coefficients $g_{\nu\mu}$, $H_{\nu\mu}$ and K_{μ} by applying the Fredholm solvability condition, and taking inverses or bordered inverses. Using the obtained approximations of the mappings \mathcal{H} and K, we transfer the asymptotics of the nonhyperbolic cycles in the normal forms derived in [3] to the original DDE (1).

Example: Active control system

In [4] the following system with $g_u = 0.1, g_v = 0.52$ and $\beta = 0.1$, is considered

$$\begin{cases} \dot{x} = \tau y(t), \\ \dot{y} = \tau \left(-x(t) - g_u x(t-1) - 2\zeta y(t) - g_v y(t-1) + \beta x^3(t-1) \right). \end{cases}$$
(8)

The trivial equilibrium undergoes a Hopf-Hopf bifurcation at the parameter values $(\zeta_c, \tau_c) = (-0.016225, 5.89802)$. Using DDE-BifTool we compute its stability and normal form coefficients. We obtain the eigenvalues $0.0000 \pm 4.5275i$ and $-0.0000 \pm 7.6449i$. The quadratic critical normal form coefficients reveal that (Re g_{2100})(Re g_{0021}) = -0.0166 < 0. We conclude that this Hopf-Hopf bifurcation is of 'difficult' type. Since the quantities are such that $\theta = -1.7009, < 0, \delta = -2.3517 < 0, \theta \delta > 0$ it follows that we are in case VI [6] implying existence of a stable three-dimensional torus, see Figure 1.

References

- Diekmann O., van Gils S.A., Lunel S.M.V., and Walther H.O. (1995) Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer New York
- Kuznetsov Yu.A. (1999) Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODEs, SIAM Journal on Numerical Analysis, 36:1104-1124.
- [3] Kuznetsov Yu.A., Meijer H. G. E., Govaerts W., and Sautois B. (2008) Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs, *Physica D: Nonlinear Phenomena*, 237:3061-3068.
- [4] Peng J., Wang L., Zhao Y., and Zhao Y. (2013) Bifurcation analysis in active control system with time delay feedback, Appl. Math. Comput., 219:10073-10081
- [5] DDE-BifTool web site, https://sourceforge.net/projects/ddebiftool/
- [6] Kuznetsov Yu.A. (2004) Elements of Applied Bifurcation Theory, 3rd ed. Springer New York
- [7] Janssens S.G. (2007) On a normalization technique for codimension two bifurcations of equilibria of delay differential equations. *Master Thesis*, Math. Dept. UU Utrecht