
ENOC 2017, June 25-30, 2017, Budapest, Hungary

The driven Rayleigh-van der Pol oscillator

René Bartkowiak∗
∗Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Germany

Summary. Synchronization of oscillatory systems is a phenomenon acting from quantum to celestial scale in nature. It is supposed
that the controlled synchronization also can be used for applications of active vibration absorption. For this purpose a self-sustained
oscillator must be developed that has stable harmonic solutions even when the oscillator is driven by an external harmonic force. This
contribution describes how the parameters for a special nonlinear oscillator are obtained, depending on a given harmonic driving force,
in such a way that the stable steady-state response is harmonic.

The harmonic Rayleigh-van der Pol oscillator

This contribution is a preliminary work for the analysis if the phenomenon of synchronization of oscillators can be used for
applications of active vibration absorption. For the vibration absorption of a system with harmonic vibration behavior it is
important that the forced vibration absorber has harmonic steady-state response. The most known self-sustained oscillators
have non-harmonic periodic steady-state solutions due to external harmonic forces. In the following the parameters for
a special nonlinear oscillator are derived for a given driving force in such a manner that the synchronized steady-state
oscillation is harmonic. The entrainment of a self-sustained oscillator by an external force can be seen as the simplest
case of synchronization [1].
Considered is a spring-mass system (massm, stiffness coefficient c) with a controlled force element F1(x, ẋ) and external
excitation F2(t) = F̂ sin(Ωt+ α), according to Figure 1.
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Figure 1: Spring-mass system with controlled force-element and external force.

The first step is the development of an unforced oscillator with an asymptotically stable limit cycle. The equation of
motion of the system reads

ẍ+ ω2x =
F1(x, ẋ)

m
+
F̂

m
sin(Ωt+ α), ω =

√
c

m
. (1)

For asymptotically stable periodic motions of the unforced system, thus F̂ = 0, a control scheme for the force element is
obtained using speed-gradient method [2]. By defining the goal function

Q =
1

2
(H(x, ẋ)−H0)2 (2)

with the total energy of the system H(x, ẋ) = 1
2mẋ

2 + 1
2cx

2 and the desired constant energy H0 > 0 the control scheme

F1(x, ẋ) ≡ −γ ∂Q̇
∂F1

= −γ(H(x, ẋ)−H0)ẋ = −γ
2

(mẋ2 + cx2 − 2H0)ẋ (3)

with the gain parameter γ > 0 can be obtained. Introducing the control force (3) into the equation of motion (1)
with F̂ = 0 and rearranging yields the differential equation of an oscillator,

ẍ+
γ

2

(
ẋ2 + ω2x2 − 2H0

m

)
ẋ+ ω2x = 0. (4)

By defining the dimensionless time τ = ωt with the notation ′ ≡ d
dτ = 1

ω
d
dt and the dimensionless displacement q = x

`

with `2 = 2H0

mω2 the standard form of (4) is given by

q′′ + ε
(
q′2 + q2 − 1

)
q′ + q = 0, ε =

γH0

mω
. (5)

The differential equation (5) with the exact harmonic steady state solution q(τ) = sin(τ − τ0) [3] is a special case of the
general non-harmonic Rayleigh-van der Pol (RvdP) equation, see also [4, 5, 6],

q′′ + ε
(
µq′2 + νq2 − 1

)
q′ + q = 0, µ+ ν > 0. (6)

Figure 2 shows the phase plot of the harmonic oscillator (5) for several initial conditions, where the steady state solution
becomes a circle with radius q̂ = 1.



ENOC 2017, June 25-30, 2017, Budapest, Hungary

-2 -1 0 2
-2

-1

0

2

q

q ′

Figure 2: Phase plot of the autonomous harmonic RvdP oscillator from (5) for several initial conditions.

The driven Rayleigh-van der Pol oscillator

Now the forced spring-mass system with an external harmonic excitation force F2(t) = F̂ sin(Ωt + α) with Ω = ηω is
considered, thus the equation of motion becomes the equation of the harmonic Rayleigh-van der Pol oscillator (5) with an
additional driving force,

q′′ + ε
(
q′2 + q2 − 1

)
q′ + q =

¯̂
F sin(ητ + α),

¯̂
F =

F̂

m`ω2
. (7)

The fundamental angular frequency of the driven oscillator can become a multiple of the driving angular frequency, kpΩ ,
with the whole numbers k, p called synchronization of order k/p. Here the synchronization of order 1/1 is considered
only.
In this section it will be studied under which conditions the steady-state response of the RvdP oscillator due to a harmonic
excitation force is harmonic as well. In a first step the existence and stability conditions of the synchronization are derived
by solving the question: which excitation force is needed to drive the steady-state solution of the autonomous oscillator (5)
with given parameters to a desired steady-state response. The second step is to adjust the parameters of the oscillator for
a given excitation force in such a way that these existence and stability conditions are fulfilled.

Driving of the oscillator amplitude
In the phase plane the steady-state solution of the autonomous oscillator (5) becomes the inner circle in Figure 3a with
radius q̂ = 1. The desired steady-state response of the oscillator where only the amplitude is driven by a still unknown
excitation force is q̂ = n and η = 1. The desired motion q(τ) = n sin τ , corresponding to the outer circle in Figure 3a, is
as well the steady-state solution of the autonomous oscillator, described by

q′′ + ε
(
q′2 + q2 − n2

)
q′ + q = 0. (8)

Now the question is what force is needed to drive the oscillator from the inner circle to the outer circle in Figure 3a. To
answer this question the equation of the oscillator in (8) is partitioned into

q′′ + ε
(
q′2 + q2 − 1

)
q′ + q = ε(n2 − 1)q′. (9)

Introducing the steady-state solution q(τ) = n sin τ into the right hand side of (9) yields the equation for the harmonically
driven harmonic RvdP oscillator from (5),

q′′ + ε
(
q′2 + q2 − 1

)
q′ + q = ε(n2 − 1)n cos τ. (10)

Since the steady-state solution q(τ) = n sin τ fulfills equation (10) exactly, the existence condition of the synchronization
between the excitation force F̄ (τ) = ε(n2 − 1)n cos τ and the oscillator is fulfilled. To determine if the synchronization
is stable the equation (10) is harmonically linearized [7] at the dimensionless angular frequency η = 1 into

q′′ + 2δq′ + q = ε(n2 − 1)n cos τ, (11)

with

2δ =
ε

π

2π∫
0

(
n2 cos2 τ + n2 sin2 τ − 1

)
n cos τ

cos τ

n
dτ = ε(n2 − 1). (12)
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Figure 3: Phase plots of steady-state solutions. (a) Driving of the oscillator amplitude from q(τ) = sin τ to q(τ) = n sin τ
(b) Driving of the oscillator phase angle from q(τ) = sin τ to q(τ) = sin ητ .

Thus the synchronization of order 1/1 is stable for

δ =
ε(n2 − 1)

2
> 0, (13)

and thus for the amplitude |n| > 1. Now the results are used to determine the amplitude response n of the oscillator (7)
due to an given excitation force F̄ (τ) =

¯̂
F sin(τ +α) =

¯̂
F cosα sin τ +

¯̂
F sinα cos τ . The comparison of the given force

with the right hand side of (10),

ε(n2 − 1)n cos τ =
¯̂
F cosα sin τ +

¯̂
F sinα cos τ,

¯̂
F =

F̂

m`ω2
(14)

shows that the amplitude of the oscillator can only be driven under the mentioned assumptions for the phase angles

α1/2 = ±π
2
. (15)

By introducing the two possible solutions (15) into (14) the conditions between the dimensionless force amplitude ¯̂
F and

the amplitude of the oscillator n can be determined

ε(n2 − 1)n = ± ¯̂
F . (16)

Equation (16) contains two cubic equations for the unknown amplitude n with the six solutions

n1/2 =
1

3σ1/2
1
3

+ σ1/2
1
3 , n3/4,5/6 =

√
3σ1/2

1
3 i

2
− 1

6σ1/2
1
3

−
σ1/2

1
3

2
±
√

3 i

6σ1/2
1
3

(17)

with

σ1/2 =

√
¯̂
F

2

4 ε2
− 1

27
±

¯̂
F

2 ε
. (18)

Introducing (17) and (16) into the stability condition (13) yields the stability conditions

ε(n2i − 1) =


¯̂
F

ni
> 0, i = 1, 3, 5,

−
¯̂
F

ni
> 0, i = 2, 4, 6.

(19)

The two equations in (16) have for each time instant one real solution in case of ¯̂
F > ε

√
4
27 , namely n1 and n4, and each

time three real solutions in case of ¯̂
F < ε

√
4
27 . It can be shown that only solutions n1 (for α = π

2 ) and n4 (for α = −π2 )

are real solutions of (16) fulfilling the stability conditions (19) for arbitrary values ¯̂
F > 0.
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Driving of the oscillator phase angle
Now the question arises what force is needed to drive only the phase angle of the autonomous oscillator (5) thus the
steady-state response is given by q(τ) = sin ητ , see also Figure 3b. This steady-state response is as well the solution of
the autonomous oscillator described by

q′′ + ε
(
q′2 + η2q2 − η2

)
q′ + η2q = 0. (20)

Partitioning of (20) into

q′′ + ε
(
q′2 + q2 − 1

)
q′ + q = (1− η2)q2q′ + (η2 − 1)q′ + (1− η2)q (21)

and introducing the steady-state solution q(τ) = sin ητ into the right hand side yields the equation for the driven harmonic
RvdP oscillator from (5),

q′′ + ε
(
q′2 + q2 − 1

)
q′ + q = (1− η2)η sin2 ητ cos ητ + (η2 − 1)η cos ητ + (1− η2) sin ητ. (22)

Obviously the excitation force in (22) is periodic but not harmonic for η 6= 1 as desired. As a result the harmonic RvdP
from (5) driven by a harmonic force F̂ sin(Ωt+α) has non-harmonic steady-state response in general, exemplary seen in
Figure 4a, except of the case Ω = ω, α = ±π2 . In the following it is studied if the parameters of the non-harmonic RvdP
oscillator from (6) can be adjusted for a given harmonic excitation force in such a way that the steady-state response is
harmonic as well.

The driven non-harmonic Rayleigh-van der Pol oscillator
In the following it is studied which force is needed to drive the non-harmonic RvdP oscillator with given parameters
from (6) to a desired harmonic response, see also Figure 4b. After solving the existence and stability conditions the
parameters of the oscillator are adjusted for a given excitation force F̄ (τ) =

¯̂
F sin(ητ + α).

The desired steady-state response q(τ) = n sin ητ is as well the steady-state solution of the autonomous oscillator de-
scribed by

q′′ + ε
(
q′2 + η2q2 − η2n2

)
q′ + η2q = 0. (23)

Partitioning of (23) yields for arbitrary constant values of a, b,

q′′ + ε

(
q′2 + η2q2 − η2n2 +

b

εnη

)
q′ +

(
η2 +

a

n

)
q =

a

n
q +

b

nη
q′. (24)

Introducing the harmonic solution q(τ) = n sin ητ into the right hand side of (24) the inhomogeneous equation

q′′ + ε

(
q′2 + η2q2 − η2n2 +

b

εnη

)
q′ +

(
η2 +

a

n

)
q = a sin ητ + b cos ητ. (25)

leads to a driven non-harmonic oscillator.
Remark: The equation of an general RvdP oscillator q′′ + ε

(
q′2 + νq2 − ξ

)
q′ + χ2q = 0 is equivalent to the standard

form (6) due to a coordinate transformation.
Due to the excitation force F̄ (τ) = a sin ητ +b cos ητ the synchronized steady-state response q(τ) = n sin ητ is existing,
but the stability has to be studied in the following. To this end equation (25) is harmonically linearized at the dimensionless
angular frequency η into

q′′ + 2δq′ +
(
η2 +

a

n

)
q = a sin ητ + b cos ητ, (26)

with

2δ =
ε

π

2π
η∫

0

( 0︷ ︸︸ ︷
n2η2 cos2 ητ + η2n2 sin2 ητ − η2n2 +

b

εnη

)
nη cos ητ

cos ητ

n
dτ =

b

nη
. (27)

The synchronization of order 1/1 is stable for

δ =
b

2nη
> 0. (28)

Now the parameters of the oscillator are adjustet to a given harmonic excitation force. If the nonharmonic RvdP oszillator
in (25) will be excited by the external force F̄ (τ) =

¯̂
F sin(ητ + α) =

¯̂
F cosα sin ητ +

¯̂
F sinα cos ητ with the arbitrary

dimensionless force amplitude ¯̂
F and the arbitrary phase angle α the synchronized harmonic steady-state response exists

if the condition
a sin ητ + b cos ητ =

¯̂
F cosα sin ητ +

¯̂
F sinα cos ητ, (29)

and by this
a =

¯̂
F cosα, b =

¯̂
F sinα (30)
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Figure 4: Phase plots. (a) Harmonical driven harmonic RvdP oscillator with η 6= 1. (b) Harmonical driven general RvdP
oscillator with the steady-state solution q(τ) = n sin ητ .

is fulfilled. By introducing the results (30) into (25) the equation of the non-harmonic oscillator driven by a given excita-
tion force can be obtained

q′′ + ε

(
q′2 + η2q2 − η2n2 +

¯̂
F sinα

εnη

)
q′ +

(
η2 +

¯̂
F cosα

n

)
q =

¯̂
F sin(ητ + α). (31)

Remark: The same results can be obtained by introducing the ansatz q(τ) = n sin ητ into q′′ + ε
(
q′2 + νq2 − ξ

)
q′ +

χ2q− ¯̂
F sin(ητ+α) = 0. From the requirement that all coefficients of the harmonic terms are vanishing a unique solution

for the parameters ν, ξ, χ can be found.

Back-transformation to the original coordinates

The back-transformation of (31) to the original coordinates of system (1) with q = x
` , q

′ = ẋ
ω` , q

′′ = ẍ
ω2` and `2 = 2H0

mω2

yields

ẍ+
γ

2

ẋ+ Ω2x2 −

2η2n2H0

m
− 2F̂ sinα

γnmΩ

√
mω2

2H0

 ẋ+

(
Ω2 +

F̂ cosα

n
√

2mH0

)
x =

F̂

m
sin(Ωt+ α). (32)

where the desired energy H0 is a free parameter. The desired energy can be defined reasonably by a desired amplitude
response

x̂ = n` = n

√
2H0

mω2
→ H0 =

x̂2mω2

2n2
. (33)

Introducing the desired energy from (33) into (32) yields the equation for the non-harmonic oscillator with adjusted
parameters for the harmonic excitation force,

ẍ+
γ

2

(
ẋ2 + Ω2x2 −

(
Ω2x̂2 − 2F̂ sinα

Ω x̂γm

))
ẋ+

(
Ω2 +

F̂ cosα

mx̂

)
x =

F̂

m
sin(Ωt+ α). (34)

The back-transformation of the stability condition (28) yields

b

2nη
=
F̂ sinα

2mx̂Ω
> 0. (35)

From the requirement that the angular eigenfrequency of the harmonically linearized system (26) must be positive for
stable solutions, the additional condition

Ω2 +
F̂ cosα

mx̂
> 0 (36)

must be satisfied for stability of the original system.
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The searched state dependent control force from (1) then becomes

F1(x, ẋ) = −γ
2

(
ẋ+ Ω2x2 −

(
Ω2x̂2 − 2F̂ sinα

Ω x̂γm

))
ẋ−

(
Ω2 − ω2 +

F̂ cosα

mx̂

)
x. (37)

If system (1) is excited by the force F̂ sin(Ωt+α), and control law (37) is used for the state dependent force element, then
the steady-state response of the system reads x(t) = x̂ sinΩt with a desired amplitude x̂ if the stability conditions (35)
and (36) are fulfilled. Additional numerical simulations confirmed this result. Now the control law (37) can be used for
applications of active vibration absorption.

Conclusions

Based on speed gradient method the harmonic Rayleigh-van der Pol oscillator is derived from a spring-mass system with a
controlled force element. By using the harmonic steady-state behavior of the unforced oscillator conditions were defined,
that are necessary for the harmonic steady-state response of the forced non-harmonic oscillator. From these conditions
the parameters for the forced oscillator, depending on a given excitation force, can be derived to ensure stable steady-state
harmonic solutions.
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