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Summary. Experimental and analytical results are presented on nonlinear and chaotic vibrations of a stepped beam constrained by an 
axial elastic spring. The rectangular cross section of the beam is changed to H shape at the mid span of the beam. One end of the beam is 
clamped and the other is simply-supported. The beam is compressed to the post-buckled state by the spring in the axial direction. In the 
experiment, the beam is excited laterally under periodic acceleration, and the dynamic responses of the beam are measured. In the 
analysis, the beam is divided into a few segments. The deflection of the beam is expanded with the mode shape function that is 
expressed with the product of truncated power series and trigonometric functions. Taking the axial displacement, the deflections, slopes, 
bending moments and shearing forces at the nodes of the segments as unknown variables, nonlinear coupled ordinary differential 
equations are derived with the Galerkin procedure. Neglecting the axial inertia of the beam, the axial displacements at the nodes are 
expressed as nonlinear functions of the deflections, slopes, bending moments and shearing forces, nonlinear responses are calculated 
with the harmonic balance method and with the direct time integration. Fairly good agreements are obtained between results of 
experiment and analysis. 
 

Introduction 
 
Recently, technology of a micro electro-mechanical system (MEMS) has been developed drastically. Micro devices 
such as an acceleration pickup and an optical scanner are widely utilized. These devices are composed with elements 
of thin elastic structures. The elements have complicated shape with discontinuous cross section like a stepped beam 
or combined configuration of beam and plate. When the thin beams are subjected to periodic force and large 
amplitude resonance are generated, nonlinear responses are easily generated. Therefore, in this paper, both 
experimental and analytical results are presented on nonlinear and chaotic vibrations of a stepped beam. 
 

Procedure of Experiment 
 
Fig.1 shows the stepped beam and its fixture. A thin phosphor bronze beam with thickness h=0.30 mm, breadth b=40 
mm and length L=140 mm is clamped at one end and simply-supported at the other end. Four thin phosphor bronze 
beam (thickness 0.31 mm, breadth 4.9 mm, length 34 mm) are attached to the mid span of the beam, then the cross 
section is locally changed to H-shaped. At the simply-supported end, the beam is connected to an elastic plate by the 
strips of adhesive films. The elastic plate is clamped by the slide block and works as the axial spring. The beam is 
compressed by the axial spring, then the beam is deformed to the post-buckled configuration. To find fundamental 
properties of the beam, the linear natural frequencies and the restoring force are inspected. The post-buckled beam is 
excited laterally with an electromagnetic exciter. The beam is subjected to gravitational acceleration and periodic 
acceleration adcos2pf t, where f is the excitation frequency and ad is the peak amplitude of acceleration. The dynamic 
responses of the beam are measured under three magnitudes of axial compression. In typical condition, chaotic 
responses are observed. The responses are inspected with the frequency response curves, the Fourier spectra, the 
Poincaré projections and the maximum Lyapunov exponents.  
 

Procedure of Analysis 
 
In the analysis, the beam is divided into three segments, two of which corresponds to the parts with original 
rectangular cross section, the other corresponds to the part with H-shaped cross section. A vector {wen} that consists 
of nodal deflection wn, slope sxn, bending moment mxn and shearing force qxn at the both nodes of the n-th segment is 
introduced, then the deflection wn in the n-th segment is expressed with the coordinate function {ζn}, following the 
similar manner of the finite element procedure. 
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In the above equations, {Zn}  is a vector composed of the mode shape function Zni that is the product of truncated 
power series and trigonometric functions, [Zn] is a 8×8 matrix consists of Zni and its first, second and third order 
derivatives, [Dn] is a 8×8 matrix consists of parameters of the n-th segment. Introducing the global nodal vector {b̂}  
which includes the nodal vector {wen} of the all segments, and the vector {d̂}  which consists of axial displacement 
of all nodes, and applying the Galerkin procedure, the nonlinear governing equation of the beam is reduced to a set of 
ordinary differential equations as follows. 
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∑ + Ĉpqb̂q

q
∑ + D̂pqvb̂qd̂v

v
∑

q
∑ + D̂pvqd̂vb̂q

q
∑

v
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Solving {d̂}  in terms of {b̂}  in Eq.(3), and then substituting it to Eq.(2), the axial displacements can be removed 
in the reduced governing equation. Neglecting the time variant terms, static deflection due to the static lateral 
acceleration and the axial initial displacements is obtained. Next, the ordinary differential equation is transformed to 
the equation in terms of the dynamic variable !bj  which is measured from the static equilibrium position. 
Furthermore, the ordinary differential equations are transformed to the standard form in terms of normal coordinates 
bi corresponding to the linear natural modes of vibration !ζ j at the static equilibrium position of the beam. Dynamic 
responses can be calculated with the harmonic balance method and the numerical integration. 
 

Results and Discussion 
 
Equivalent moment of cross section of the H-shaped part and the initail deflections are indentified by comparing the 
experimental and analytical results of the post-buckled deformation (Fig.2) and characteristics of restoring force 
under an concentrated lateral force on the beam (Fig.3), for three conditons of the magnitude of axial compressive 
force. Fig.4 shows the nonlinear frequency curves of the beam comparing the analytical and experimental nonlinear 
responses. In the figure, the black and gray curves are the stable and unstable periodic responses, respectively, 
calculated by the harmonic balance methos. The principal resonance (1:1) and the sub-harmonic resonance (1:2) of 
the order 1/2 of the lowest mode appeards corresponding to the softening-and-hardening characteristics of the 
restoring force. The results of direct numerical integration, shown with the blue curves, almost follows the stable 
periodic responses. At the non-dimensional frequency ω=12.92, chaotic response are obtained in the analysis. The red 
curves in the figure presents the experimental resluts. Fiary good agreements are obtained between experimental and 
analytical periodic responses. Chaotic responses are also observed near the frequency ω=12.5. Fig.5 shows the 
experimental and analytical results of the Poincaré projection of the chaotic responses in the phase space of deflection 
and velocity. Both experimental and analytical results show similar fractal patterns.  
 
 

 
References 

 
[1] Nagai K., Maruyama S., Sakaimoto K. and Yamaguchi T., (2007) Experiment on Chaotic Vibrations of a Post-buckled Beam with an Axial Elastic 

Constraint.  J. Sound and Vibration  304:541-555. 

Base Plate

      Rigid

h=0.30mm
Elastic Plate

z

x

Slide Block

W(x,t)

ha=0.92mm

he=0.80mm

 Block

x

La=188mm
L=140mm

b
=

L'=34mmb'=4.9mm

4
0

m
m

Lr=53mm

stepped section

Fig.1 Beam and fixture 

Fig.2 Post-buckled deformation Fig.3 Characteristics of restoring force 

Fig.4 Nonlinear frequency response curves 

Experiment          Analysis 
Fig.5 Poincaré projection of chaotic responses 


