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Summary. Two typical nonlinear oscillators, the Van der Pol and the Duffing oscillators are re-examined from a viewpoint of vibration 

power flows. The former is a frequently-used model for nonlinear damping with limit cycle oscillation behaviour, while the latter is often 

used for models with cubic nonlinear stiffness. The power flow analysis approach for nonlinear dynamical systems is firstly presented. 

This is followed by investigations of the dynamics of these oscillators in terms of vibration power flows. The effects of nonlinearity on 

time-averaged input and dissipated powers and the maximum kinetic energy are studied. Some intrinsic nonlinear power flow behaviour 

is revealed. Potential benefits of employing nonlinearities for vibration energy harvesting and vibration mitigation are demonstrated. 

 

The power flow analysis (PFA) approach 

 

The vibration power flow analysis approach has become a wide-accepted to characterise the dynamic behaviour of 

complex systems and coupled structures. Vibration power flow combines the effects of force and velocity in a single 

quantity and thus provides a good performance index to quantify the vibration transmission at the interface of sub-

systems within an integrated structures. Since the introduction of power flow concept in 1980s, it has been successfully 

adopted to investigate many linear passive or active vibration control systems [1]. However, it should be pointed out 

that engineering systems are inherently nonlinear. Many recent studies have also shown that nonlinear elements may 

be used to improve the performance of vibration isolators and dynamic vibration absorbers to enhance vibration 

mitigation. It is thus of importance to develop vibration power flow analysis approach for nonlinear dynamical systems 

so as to understand their associated power flow characteristics [2]. This can also provide new insight to dynamic designs 

of systems for effective vibration suppressions or energy harvesting purpose [3-6]. 

To demonstrate vibration power flow formulations, the governing equation of a dynamical system may be written as 
[M]{𝒙̈} + [C]{𝒙̇} + [K]{𝒙} = {𝒇},                                 (1) 

where [M], [C] and [K] are the mass, damping, and stiffness matrices which may not be constant, but change with 𝑥 

and/or 𝑥̇ due to the nonlinearity of the system, {𝒙̈}, {𝒙̇} and {𝒙} are the acceleration, velocity and displacement 

vectors, and {𝒇} is the external force vector. The equation of power balance may be obtained by pre-multiplying Eq. 

(1) by the velocity vector {𝒙̇}T: 

𝐾̇ + 𝑝𝑑 + 𝑈̇ = 𝑝𝑖𝑛,                                       (2) 

where 𝐾̇ = {𝒙̇}T[M]{𝒙̈} and 𝑈̇ = {𝒙̇}T[K]{𝒙} represent the rates of change of the kinetic and the potential energies of 

the system, respectively, while 𝑝𝑑 = {𝒙̇}T[C]{𝒙̇}  and 𝑝𝑖𝑛 = {𝒙̇}T{𝒇}  are the instantaneous dissipated and input 

powers, respectively. The superscript T denotes transpose matrix. Eq. (2) may be averaged in a time span from 𝑡 = 𝑡0 

to 𝑡 = 𝑡0 + Δ𝑡 to obtain time-averaged power flow equation: 

Δ𝐾 + ∫ 𝑝𝑑d𝑡
𝑡0+Δ𝑡

𝑡0
+ Δ𝑈 = ∫ 𝑝𝑖𝑛d𝑡

𝑡0+Δ𝑡

𝑡0
,                             (3) 

where Δ𝐾 and Δ𝑈 are the net changes in kinetic and potential energies, respectively. Eq. (3) may be time-averaged 

to obtain time-averaged power flow equation. The averaging time may be taken to be the period of a periodic response. 

There may be different ways of obtaining the power flow behaviour of the systems. One straightforward approach is to 

transform Eq. (1) into a set of first-order differential equations, which may be solved by direct numerical integrations 

to obtain the response. The instantaneous and time-averaged power flow variables may then be found. Another approach 

is to adopt a combination use of the harmonic balance method and numerical methods. This involves expressions of the 

steady state response and the nonlinearity in Eq. (1) with a number of harmonic terms. Balancing these the 

corresponding harmonic terms results in nonlinear algebraic equations which can be solved by numerical methods to 

obtain the displacement / velocity response and subsequently the power flow variables.  

 

Application of PFA to typical nonlinear oscillators 

 

To demonstrate the application of PFA approach for nonlinear dynamical systems, two typical nonlinear systems, the 

Van der pol oscillator and the Duffing oscillator, are investigated from a power flow perspective so as to examine the 

effects of damping and stiffness nonlinearities on vibration power flow characteristics. The dynamic equation of the 

Van der Pol oscillator is expressed by 

𝑥̈ + 𝛼(𝑥2 − 1)𝑥̇ + 𝑥 = 𝑓 cos 𝜔𝑡,                                 (4) 

 

The equations of power banlance is 

𝑥̈𝑥̇ + 𝛼(𝑥2 − 1)𝑥̇𝑥̇ + 𝑥𝑥̇ = 𝑥̇𝑓 cos 𝜔𝑡,                              (5) 

The power flow varibles of the system are obtained by using analytical approximation and also numercial integrations. 

In the content that follows, some results are presented to show the intrisic nonlinear power flow phenomena of the 

systems. It is well-known that the unforce Van der Pol oscillator is characterised by a limit cycle oscillator, as shown 
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in Fig. 1(a). The steady-state response evolves to a stable limit cycle for different initial conditions, as illustrated by 

points B and C in the figure. Correspondingly, when the dissipated power 𝑝𝑑 is added as another coordinate, the limit 

cycle is transformed into a three-dimensional form, as shown in Fig. 1(b). It is found that 𝑝𝑑 may become negative.  

 

 
Figure 1.  Limit cycle oscillations (a) two-dimensional form and (b) three-dimensional form (𝛼 = 0.5, 𝑓 = 0). 

For the forced Van der Pol oscillator, analytical approximation and numerical integrations are used to obtain the time-

averaged power flow level. To illustrate, a first-order approximation of the periodic displacement and velocity response 

is expressed by 𝑥 = 𝑟1 cos(𝜔𝑡 + 𝜙) , 𝑦 = −𝜔𝑟1 sin(𝜔𝑡 + 𝜙) , respectively. Following a harmonic balance 

approximation, the frequency-response relationship is obtained. An analytical expression of time-averaged input power 

can then be found. As shown in Fig. 2, the system exhibits quasi-periodic motion in a large range of excitation frequency 

in the low and the high frequency range and periodic motion between approximately 𝜔 = 0.54 and 𝜔 = 1.28. 

Bifurcations occur at these two frequencies due to the change in the type of the response. It shows that the analytical 

approximation of time-averaged input power agrees quite well with numerical integration results. Other frequency 

components need to be included for analytical formulation of power flows associated with quasi-periodic responses. 

The power flow analysis (PFA) has also been used to investigate the power flow behaviour of the Duffing oscillator, 

with some results reported previously in ref [3]. The power flow characteristics associated with nonlinear stiffness 

systems have been explored and employed for nonlinear vibration mitigation [4-6].  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Power flow characteristics of the forced Van der pol oscillator. (a) Bifurcation diagram and (b) time-averaged input 

power (𝛼 = 0.5, 𝑓 = 1). Black dots: periodic responses; red dots: quasi-periodic responses. Lines: analytical approximations. 

 

Conclusions 

 

Vibration power flow analysis was carried out to re-examined typical nonlinear oscillators from a power flow 

perspective. It is shown that the dissipated power of the unforced Van der Pol oscillator may be negative. For the forced 

Van der Pol oscillator, the time-averaged input power may also be negative at some excitation frequencies. This 

suggests a net energy output from the system. It is of direct contrast to linear systems and may be used for enhancing 

vibration energy harvesting. Some power flow characteristics of the Duffing oscillator and insights were also obtained 

to improve vibration control performance by introducing nonlinear stiffness to vibration mitigation systems.      
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