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Summary. It is well-known that the dynamics near hyperbolic equilibria are described by Hartman-Grobman and that partially hy-
perbolic equilibria can be studied through center manifolds. The blowup method was developed to enable the use of these methods
to situations when initially there are just zero eigenvalues of the linearization. Loosely speaking, the blowup approach blows up the
singularity so that the zero eigenvalues of the resulting, transformed vector-field can be divided out. The corresponding division gives
rise to a new vector-field, whose orbits agree with the original one away from the singularity, that can then be studied by the hyperbolic
methods.
This talk is part I of two parts, where we apply blowup and singular perturbation theory to the regularization of the classical, nonsmooth
Painlevé problem. Here we will first demonstrate blowup on a simpler, yet related, toy problem. Subsequently we will then explain the
Painlevé problem and its regularization. Finally we will use blowup to prove the existence of canards.

Nonsmooth modelling and singular perturbations

Contact in mechanics is frequently modelled by nonsmooth forces. Coulomb’s law of friction is an obvious example:
The friction force changes abruptly when passing through zero relative velocity. However, nonsmooth models are not
in general mathematically well-posed. The classical example of Painlevé [9], consisting of a slender rod slipping along
a rough surface (see Fig. 1), described by Coulomb’s friction and an unilateral constraint, is a simple example of a
nonsmooth system with both loss of existence and uniqueness of solutions, now known collectively as Painlevé paradoxes
[1, 2]. Often one resorts to nonsmooth models to hide or idealise phenomena that happen on a small scale and are deemed
unimportant. The presence of paradoxes, as in the Painlevé’s example, is a failure of the nonsmooth model to provide a
complete description. Things that we discard at the microscale become important. Coulomb’s law, for example, is known
to be an idealization. More accurate models of friction, e.g. [10], are smooth, albeit with sharp transitions. Contact is
therefore probably a singular perturbation problem rather than a nonsmooth one.

Figure 1: The classical Painlevé problem.

For a mathematician, singular perturbed models are easier to study
than their nonsmooth counterparts. For one thing, we have (local) ex-
istence and uniqueness of solutions. But we also have all the theory
of smooth dynamical systems at our disposal. For example, Fenichel’s
geometric theory of singular perturbations [5] and blowup [3, 7]. To
demonstrate the potential of these theories in the context of nonsmooth
systems, consider the following simple example:

ẋ = 1, ẏ = x tanh(yε−1) + αx2(1 + tanh(yε−1)). (1)

The singular limit ε = 0 is piecewise smooth

ẋ = 1, ẏ =

{
x+ 2αx2 for y > 0,
−x for y < 0.

(2)

using that tanh(z) → ±1 for z → ±∞. The phase portrait of (2) (as a Filippov system) is sketched in Fig. 2 near
(x, y) = (0, 0). The orbits in red γ+ and blue γ− of (2)y>0 and (2)y<0, respectively, are both tangent to y = 0 at x = 0.
There is therefore a fold-fold singularity p at (x, y) = 0. Solutions starting within the shaded region (such as the orbit in
black) are not forward unique: There exists infinitely many forward trajectories through the point p. Some candidates are
illustrated in the figure. But for (1), we are able to obtain the following:

Theorem 1 Fix α 6= 0 and any initial condition within the shaded region of Fig. 2. Then the forward orbit converges to
(a) γ+ ∩ {x > 0} if α > 0 or (b) γ− ∩ {x > 0} if α < 0, for x > 0, as ε→ 0. 2

To prove the theorem, we first apply the following scaling y = εŷ. In terms of (x, ŷ, ε), we then obtain a normally
attracting critical set Ca : ŷ = 0, x < 0, ε = 0 and a repelling one Cr : ŷ = 0, x > 0, ε = 0. Compact subsets of Ca,r
perturb by Fenichel’s theory to slow manifolds Sa,ε and Sr,ε, respectively, for 0 < ε � 1. However, there is also a line
p : x = 0, ŷ ∈ R, ε = 0 of normally non-hyperbolic critical points. To describe the passage near this line, we follow
[3, 7] and blow it up by applying the following transformation:

Φ : x = rx̄, ε = r2ε̄, r > 0, (x̄, ε̄) ∈ S1 : x̄2 + ε̄2 = 1. (3)

This transformation blows up the line p to a cylinder p̄ : r = 0, (x̄, ε̄) ∈ S1, ŷ ∈ R and transforms the vector-field on
(x, ŷ, ε) to a vector-field X on (ŷ, r, (x̄, ε̄)) ∈ R × R+ × S1 by pullback. Here X|r=0 = 0. However, the weights of r
in (3), have been chosen so that X̃ = r−1X is well-defined and satisfy X̃|r=0 6= 0. This desingularization does not alter
the phase portrait of X outside the cylinder R× {0} × S1. But since X̃|r=0 6= 0, we can use perturbation techniques of
dynamical systems to perturb away from r = 0 and prove the statement of the theorem. (The result is in fact independent
of the regularization function. For example, a similar statement holds true if tanh is replaced by 2

π arctan.)



ENOC 2017, June 25-30, 2017, Budapest, Hungary

The Painlevé problem

Figure 2: Phase portrait of (2). Solutions are forward
non-unique from p.

In the second part of this paper, we focus on the Painlevé problem. In
Fig. 3, we show the (θ, φ = θ̇)-phase plane of the rigid body motion
with the special point P [4] that divides the configurations of the rod
into four quadrants. In the green region, the rod will lift off from con-
tact with the rigid surface. In the yellow region, the rod slips along the
surface. Genot and Brogliato [4] showed that for a sufficiently large
friction coefficients µ > µP there is a special slipping orbit (γs in
Fig. 3) within the yellow quadrant which reaches the point P in finite
time. The rigid body formulation is not able to predict what happens
beyond this point. Even worse, in the green region the rigid body for-
mulation has no solution, while there exists two solutions within the
purple region, corresponding to slipping and lift-off.

Figure 3: The (θ, φ = θ̇)-plane for the classical
Painlevé problem of Fig. 1.

To resolve the paradoxical situations we assume that there is com-
pliance at the point A between the rod and the surface, when they
are in contact (see Fig. 1). Following [8], we assume that there are
small excursions into y < 0. Then we take the nonnegative normal
force FN (y, w) as a piecewise smooth function of (y, w): FN (y, w) =
ε−1

[
F (ε−1y, w)

]
where F (ŷ, w) = −ŷ − δw + O((ŷ + w)2. Here

ε is a small parameter related to the spring constant, δ is the damping
and the operation [·] is defined by

[f(y, w)] ≡
{

0 for y > 0,
max{f(y, w), 0} for y ≤ 0.

(4)

The choice of scaling [8] ensures that the critical damping coefficient
is independent of ε.

Results

We proceed as in the toy problem (1) above: First we apply the scaling y = ε2ŷ. Then we obtain an attracting critical
manifold Ca (of focus-type close to P ) as a graph over the yellow region in Fig. 3 and a saddle-type critical manifold Cr
as a graph over the purple region. The two manifolds carry a reduced flow coinciding with the slipping dynamics along
y = 0 described by the rigid body system. However, the closure of the two sets Ca,r intersect in a line P̂ (the compliant
version of P ) of non-normally hyperbolic critical points. We blowup this line and obtained the following:

Theorem 2 [6] Let µ > µP . Then for 0 < ε� 1 there exists a canard orbit γsε for the compliant system, which connects
the attracting Fenichel slow manifold Sa,ε with the stable manifold of the repelling Fenichel slow manifold Sr,ε. γsε is
o(1)-close to γs and it divides Sa,ε into orbits that lift off from those that eventually stick. 2

The proof is not standard as we only gain ellipticity (rather than hyperbolicity) of Ca at the blowup of P̂ . Nevertheless,
using normal form transformations and an extended version of the center manifold theorem, we are able to reduce the
proof of the theorem to asymptotic properties of solutions of the following third order linear equation

y(3)(θ2) = θ2y
′(θ2) + (1− ξ)y(θ2).
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