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Summary. We investigate the dynamics of a system with a driven nonlinear mode that is coupled to a linear mode with a frequency ratio
of 1:3. The nonlinear driven mode is described by the simplest model that displays amplitude dependence of the vibration frequency
(i.e., a Duffing equation) and enables a driving-tuned internal resonance. Both modes are lightly linearly damped, but the decay rate
of the linear mode is much faster than the decay rate of its nonlinear counterpart. This allows us to simplify the analysis by assuming
that the linear (fast) mode adiabatically follows the nonlinear (slow) mode. Then the dynamics can be described by a single mode with
quintic nonlinear damping and stiffness terms that result from the backaction of the linear mode. We show that this backaction can
significantly change the dynamical response of the driven mode. Thus, instead of a standard forced Duffing response curve, one obtains
an anomalously strong nonlinear friction along with a peculiar response curve that is marked by complex hysteretic behavior. These
effects can be thought of as a consequence of the “repulsion” of the vibration frequencies away from the resonance condition. The
results of this study bear on the experimental observations in micro- and nano-scale resonators that exhibit internal resonance.

One of the most important and interesting nonlinear phenomena of multi-mode dynamical systems is internal resonance
(IR), in which the system vibrational modes (which, by definition, are linearly uncoupled) interact strongly even in the
presence of weak nonlinear coupling when the modal frequencies are rationally related(ω2/ω1 ≈ n/m). In the con-
servative case (i.e., in the absence of dissipation), a relatively simple picture emerges. Here, the resonance leads to the
onset of nonlinear vibrations accompanied by energy oscillations between the resonating modes, reminiscent of linear
resonance between coupled harmonic oscillators. However, on a finer scale, the picture is more complicated as the motion
can display a whole range of frequencies, and even dynamical chaos. On the other hand, in the non-conservative case the
modes are interacting with the environment, which leads to dissipation and noise, and thus only relatively low-order IRs
(|n,m| ≤ 3) are generally observed in experiments. If the modes have very different decay rates, one of them can serve
as a type of thermal reservoir for the other. This effect has attracted much attention in cavity optomechanics [1] and has
been recently used to drive a slowly decaying microwave cavity mode into a coherent quantum state [2, 3, 4].

Our study refers to a pair of modes with frequency ratio close to 1:3. In many systems the coupling between such
modes is comparatively strong; for symmetry reasons, in micro- and nano-mechanical systems it is often stronger than
the coupling between the modes close to 1:2 resonance. We explore a system with driven nonlinear mode (mode 1) that
is coupled to a linear mode (mode 2) with a frequency ratioω2 ≈ 3ω1. This model is amenable to analysis and reveals
many generic features of IRs. The nonlinear mode is described by the simplest model that displays amplitude dependence
of the vibration frequency, i.e., the Duffing oscillator, and the resonant coupling terms arise from a single-term potential
Vint = αx3

1x2. Note that of all possible nonlinear coupling terms,Vint is sufficient to capture the essential features of the
resonance, that is, it is the the key term in the normal form for this resonance [5, 6]. Both modes are taken to be lightly
damped with exponential decay ratesΓ1 andΓ2, respectively. The complex amplitude equations for this model are given
by
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whereF andωF are the drive amplitude and frequency (from(F cos ωF t)), andΔω1 = ωF − ω1, Δω2 = 3ωF − ω2 are
the frequency detunings of modes 1 and 2 relative to the drive, respectively. Eqs. (1)-(2) can be considerably simplified
for the case ofΓ2/Γ1 � 1 (i.e., when mode 2 is relatively fast and acts as a thermal reservoir for mode 1). In the limit
of Γ2/Γ1 � 1, we can disregard the time derivative ofA2 in Eq. (2) (sinceA2 will have already reached the steady-state
value on the time scale of the evolution ofA1 and will adiabatically followA1) and solve the resulting linear algebraic
equation forA2. Substitution of thisA2 into Eq. (1) yields the following reduced-order single-mode equation forA1
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Thus, we immediately see that the dynamics of mode 1 are augmented by a finite bandwidth(−Γ2 < Δω2 < Γ2)

nonlinear quintic damping given by− α2
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. To gain insight into this nonlinear friction, which has linear and

quintic, but not cubic, terms, we consider first the dynamics in the absence of driving,F = 0, for which we takeωF → ω1

in the detuning parameters, and allow the complex amplitude to rotate in the complex plane with its Duffing amplitude-
frequency dependency,A1 → A1e

iΦ, Φ = 3γ
2ωF

∫
|A1|2dt. Of interest here is the manner in which mode 1 decays
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Figure 1: Left - dependence of the effective instantaneous decay rateΓeff on vibration amplitude|A1| of mode 1 in the adiabatic
regime of fast decaying mode 2. Curves 1 and 2 refer to3ω1−ω2
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= 0.3. Right - Mode 1 response curve forΓ2/Γ1 � 1, stable/unstable steady-state responses denoted by

black/red, curves, respectively.Γ2/Γ1 = 50, α/γ = 1, (ω2 − 3ω1)/Γ2 = 100 andF
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from an initial amplitude in the presence of resonant nonlinear coupling. The left panel of Figure 1 shows the scaled
instantaneous decay rateΓeff/Γ1 = Γ−1

1 d(log |A1|)/dt versus time for different parameter values. The figure shows two
important features. First, it displays a peak value when the instantaneous frequency of mode 1 equals toω2/3, that is,
at the point of IR. The height of the peak increases with increasing coupling strengthα and with increasing frequency
detuning|Δω2| ∝ ω2 − 3ω1. Second, the instantaneous rate is nearly constant except near the IR condition. For small
amplitudes linear damping holds,Γeff/Γ1 ≈ 1, while for large amplitudes the Duffing amplitude-frequency dependency
leads to a non-resonant interaction. Yet, the decay rate,Γeff/Γ1, does not approaches unity. This is a consequence of the
strongly nonlinear coupling, with the coupling energy∝ |A1|3.

Along with this anomalous dissipation, the backaction from a thermal reservoir leads to a higher-order nonlinear shift

in the frequency, α2
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, which has a strong effect on the response of the system to harmonic excitation. Note

that for an upward sweep in the drive frequency, for a hardening mode 1, this frequency shift changes from softening
at larger amplitudes (Δω2 < 0) to hardening at lower amplitudes (Δω2 > 0). This phenomenon leads to a peculiar
response curve, a sample of which is shown in right panel of Figure 1. As can be seen from the figure, for sufficiently
strong driving there is a region aroundωF ≈ ω2/3 where the response curve deviates sharply from the well-known single
mode Duffing behaviour. This peculiarity is intimately related to the unforced amplitude-dependent frequency of mode
1 (ω1eff − ω1 ∝ |A1|2), which, due to the coupling with mode 2, exhibits a “repulsion” of the vibration frequency away
from the resonance where3ω1eff = ω2. It also leads to an interesting hysteretic behavior. If we start from negative
Δω1 = ωF − ω1 and increaseωF , we move from the small amplitude branch until it ends and we jump to the high-
amplitude branch. From there, if we continue to increaseωF , we jump to the small-amplitude branch which goes to large
positiveΔω1. The large amplitude branch for positiveΔω1 is isolated and cannot be accessed by varyingωF at this level
of drive.

As a final remark we note that Eq. (3) describes the dynamics of a single complex variable or equivalently, two
real variables. It is seen from this equation that the stationary states of the system are either stable states or saddle
points. Indeed, if we linearize Eq. (3) about a stationary state, we will see that the sum of the two eigenvalues of the
corresponding characteristic equation is negative, which indicates that at least one of the eigenvalues that characterize the
linearized motion has a negative real part. The system can switch between different stable states by varying parameters
of the drive (or because of noise), but there are no states where the amplitude|A1| would oscillate. However, this result
relies on the adiabatic approximation and applies only in the limit of a large ratio of decay ratesΓ2/Γ1 � 1.
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