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Summary. We propose an approach for synchronization analysis of nonlinear planar oscillators that allows, in particular, to treat a
situation when the coupling gain is not strong enough to ensure (almost) global complete synchronization and coupled network behavior
is caracterized by multistability.
During the last two decades the concept of synchronization became ubiquitous in various disciplines including engineer-
ing, physics, biology, computational neuroscience and many others. Generally speaking, synchronisation corresponds to
the situation where some form of correlated behavior of a group or a network of systems appears as a result of local inter-
connections between the systems in the network. The general concept of synchronization of complex systems is extremely
broad. Depending on the application domain and particular properties of the systems under consideration, different types
of synchronization are considered - coordinate, phase and frequency synchronization, controlled synchronization to name
a few. See, for example, Blekhman et al. (1997) for mathematical definitions of the synchronization phenomena.
Here we consider a synchronization problem for a network of nonlinear oscillators that are locally coupled using linear
diffusive coupling. It is well known that in the case that the coupling is sufficiently strong and all the nodes are identical,
the effect of complete synchronization appears in such a network, that is all the oscillators have the same phase, amplitude
and frequency. Case of heterogeneous networks of oscillators was recently analyzed in Panteley et al. (2015) based on
the two complementary paradigms: synchronization and collective (emergent) behavior. It was shown that if the coupling
gain is strong, the oscillators practically synchronize (both in phase and amplitude). Moreover, the emergent collective
behavior of the network is characterized by the dynamics of a single "averaged" oscillator. The notion of "dynamic
consensus" was introduced in Panteley et al. (2015) to emphasize the dychotomy of these two effects.
Pursuing the same line of research, in this article we contemplate consequences of not strong coupling, that is, we consider
linearly coupled networks of identical oscillators in the case when complete synchronization is not necessarily possible.
In particular we consider a network of N Andronov-Hopf oscillators that are descibed by the following equations

żi = f(zi, µi) + ui, i ∈ I := {1, . . . , N} (1)
f(zi, µi) := −|zi|2zi + µizi

where zi, ui ∈ C are, respectively, the state and the input of ith oscillator, µi = µRi + iµIi ∈ C is a complex parameter
which defines the asymptotic behavior of the ith oscillator. We assume that the graph of interconnections between the
oscillators is connected and undirected and the coupling is linear, i.e., the input ui is given by

ui = −γ
[
di1(zi − z1) + di2(zi − z2) . . .+ diN (zi − zN )

]
, i ∈ I (2)

where the constants dij (i, j ∈ I) are positive and the scalar parameter γ > 0 corresponds to the coupling strength.
Denoting by z ∈ CN the overall network’s state, that is z = [z1, . . . , zN ]>, using (1) and the expression for the diffusive
coupling, (2), the overall network dynamics can be rewritten in the following form

ż = F (z)− γLz, (3)

where matrix L ∈ RN×N is a so-called Laplacian matrix of the interconnections defined by the constants dIJ and the
function F : CN → CN is given by

F (z) = [f(zi, µi)]i∈I , (4)

Regrouping all the linear terms together we can rewrite the network model model as

ż = Aγz − C(z)z, (5a)
Aγ := M− γL. (5b)

where diagonal matrices C(z) andM are defined as follows

C(z) := diag(|z1|2, . . . , |zN |2), M := diag(µ1, . . . , µN ).

In the case that the network graph is connected and undirected the Laplacian matrix L = L> ≥ 0 can be presented in the
form

L = V ΛV −1, (6)

where Λ ∈ CN×N is a diagonal matrix whose elements correspond to the eigenvalues of L and columns of the matrices
V, V ∗ ∈ CN×N correspond to the right and left eigenvectors of the Laplacian. Notice that without loss of generality the
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eigenvalues of matrix L can be ordered in decreasing order, that is, λ1(L) > λ2(L) ≥ . . . ≥ λN (L). Clearly, the matrix
Aγ has the same eigenvectors as L, while the eigenvalues of the matrix Aγ are defined as

λi(Aγ) = µ− γλi(L), i = 1, . . . , N. (7)

It is well know that if the coupling parameter γ satisfies the property Reλ2(Aγ) < 0 then it is possible to show that the
network of oscillators completely synchronize – see e.g. Pogromsky et al. (1999); Pham and Slotine (2007). We treat here
the case where this inequality is not satisfied, that is λ2(Aγ) ≥ 0. It is worth repeating that in case where λ2(Aγ) ≥ 0
complete synchronization is not necessarily achievable and other effects such as clustering may appear (see Choe et al.
(2010)). We assume that the matrixAγ hasm non-negative eigenvaluesuse and we use the matrix V to define a coordinate
transformation.
Using the same approach as in Panteley et al. (2015), we start our analysis by decomposing the network dynamics in
two parts: on one hand, the dynamics of the collective mean-field nodes network motion and, on the other, the dynamics
of each individual unit of the network relative to the dynamics of the mean-field’s. To do so we propose a change of
coordinates that is similar to that Panteley et al. (2015) and is based on the decomposition of the matrix V in two parts
V = [V1, V2], where submatrix V1 is composed from the eigenvectors corresponding to nonnegative eigenvalues of the
matrix Aγ , while V2 corresponds to negative eigenvalues.
Next, we project the network dynamics onto two orthogonal subspaces defined by the matrices V1 and V2 and introduce
the new coordinates zm = V ∗1 z which descibe dynamics of a "mean-field" network, while the coordinates ze = V ∗2 z
or, equivalently, e = z − V1zm, correspond to the dynamics of each individual oscillator relative to the dynamics of the
mean-field oscillators zm.
As a result, we represent the network’s dynamics as an interconnection of two systems - one of them (zm) corresponds to
the behavior of the reduced order network of mean-field oscillators while the second part corresponds to the dynamics of
the synchronization errors.
The drastic difference between the case of complete synchronization and the case considered here is that in the first case
dimension of mean-field dynamics, that is that of zm coincides with the dimension of a single oscillator (see Panteley
et al. (2015)) while now zm represents several oscillators, therefore the mean-field dynamics corresponds to a dynamics
of a reduced order network of oscillators.
We define the synchronisation errors manifold as

S = {e ∈ CN : e1 = e2 = . . . = eN = 0} (8)

and we analyze the stability properties of this manifold. We consider several cases when thus defined synchronization
manifold is globally asymptotically stable under some addtional assumptions on the properties of the matrix V using a
quadratic Lyapunov function V (e) = 1

2e
∗e. Moreover, in this case, the dynamics of the overall network is defined by

the behavior of the reduced order network of mean-field oscillators which appears again to be a network of identical
oscillators but with nonlinear coupling gains.
Our theoretical results are illustraded with numerical simulations that we do not present here due to space limitations.
Future extentions of the apprach include other type of planar oscillators and extension to the systems where individual
nodes have higher dimension.
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