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Summary. We investigate the dynamics of a closed-loop MEMS-based oscillator which is synchronized by a weak harmonic drive
and demonstrate how one can exploit nonlinear behavior to reduce oscillator amplitude fluctuations at large operating amplitudes.
This work was motivated by experimental observations that prompted an integrated theoretical and experimental study. Analytical
predictions are based on an oscillator model that incorporates a resonator element with a cubic (i.e., Duffing type) nonlinearity, weak
coupling to a clean external harmonic drive, and both thermal (white) and frequency (colored) noise terms that account for interactions
of the resonator with its environment. The method of stochastic averaging is used to derive an expression for the rate of amplitude
fluctuations induced by the noise sources, and the results predict a reduction in the amplitude fluctuations by two orders of magnitude
due to the Duffing nonlinearity at large amplitudes of operation. The predictions are experimentally demonstrated using a closed-loop
oscillator with a MEMS-based disk resonator coupled to a small external sinusoidal signal from a signal generator. The results show
how one can avoid the well-known synchronization-induced amplitude fluctuations by operating at large amplitudes with a nonlinear
resonator element in the oscillator.

Synchronization, as the roots of its name explain (syn, meaning the same or common, andchronos, meaning time), is
the keeping of common time among oscillators. Perhaps the earliest and most familiar example is the synchronization
of two pendulum clocks hung on the same wooden beam, which was described by Christiaan Huygens as “odd kind of
sympathy”. In this case, the clocks are weakly coupled through forces transmitted by the beam, resulting in the pendulums
of the clocks swinging together in synchronization. A recent interest in synchronization has been raised by the desire
to reduce frequency fluctuations in MEMS-base oscillators, for time-keeping technologies. Furthermore, in MEMS-
based oscillators, frequency fluctuations are intensively investigated since they directly affect the stability of the oscillator
and hence can degrade the oscillator performance. However, while synchronization dramatically improves frequency
fluctuations, it also can increase amplitude fluctuations due to frequency-amplitude noise conversion that is induced by
the synchronization [1]. We note that amplitude stability and sensitivity are also key factors in sensing applications and
hence, due to synchronization, there is a trade-off between amplitude and frequency stability characteristics. Nevertheless,
in what follows, we show that by considering a disk resonator with a Duffing nonlinearity and operating at large amplitude,
the synchronization-induced amplitude fluctuations can be largely suppressed.

We consider a model for the system shown in Figure 1 which consists of a closed-loop self-sustained oscillator with
a high-Q nonlinear (Duffing type) resonator element, thermal (additive) and frequency (multiplicative) noise sources, and
an externally injected harmonic signal. In terms of the resonator displacement(x), the model yields

ẍ +
ω0

Q
ẋ + ω2

0x + α̃x3 = S(x, ẋ) + Ẽ cos(ωEt) + ξ̃1(t) + ξ̃2(t)x, (1)

where overdots denote derivatives with respect to time,S represents the saturated closed-loop feedback input (gains,
phase shifts, etc.),̃α is the Duffing nonlinearity parameter,Q is the quality factor (Q � 1), ω0 is the resonator natural
frequency,Ẽ andωE are the amplitude and frequency of the externally injected synchronizing signal, andξ̃1,2 are wide-
sense stationary, zero-mean, additive and multiplicative noises. For simplicity we will consider the case of hard-limiting
mechanism that sets the oscillator amplitude, whereS ≈ s∙sgn(ẋ). The model is augmented by the following assumptions:
(i) the noises and the external signal are relatively weak components of the signal(||Ẽ||, ||ξ̃1||, ||ξ̃2x|| � ||s||); (ii) the
frequency of the external signal is close to the resonator natural frequency(|ωE−ω0

ω0
| � 1); (iii) the thermal (additive)

noise source is broad-band; (iv) the frequency (multiplicative) noise source is narrow-band and its spectral density is
centered around zero frequency, implying that we consider an oscillator that is lightly perturbed by the synchronizing
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Disc
Resonator
Mode X

Demod Amp readout

PLLFeedback

Freq readout

ωx

Mode X

Mode Y

Figure 1: Setup for studying synchronization between the X mode of the disc resonator and an external signal, and schematic of the
disc resonator along with the shapes of its two fundamental modes X and Y.
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Figure 2: Normalized standard deviation,σ(a)
〈a〉 (σ(a) ≡

√
〈a2〉 − 〈a〉2), as a function of the mean (oscillator operating) amplitude,

〈a〉, as measured in millivolts. Comparison between model prediction (solid black line) and experimental measurements (red circles).

signal, thermal fluctuations with short correlation time, and frequency fluctuations with long correlation time. Using these
assumptions, applying the method of stochastic averaging, normalizing the amplitude(ã = sQ

ω2
0
a) and time(t = 2Q

ω0
τ),

and linearizing the system around the stable synchronized locked-solution(a = a∗ + δa, θ = θ∗ + δθ), we obtain the
following pair of Langevin equations for the normalized deviations of the amplitude and phase

δ̇a = −δa −
2λθ(Δω̃ + 3α)

1 + 9α2
δθ + (Sξ1(ω0))

1/2
η1, (2)

δ̇θ =
3α

2
δa − λθδθ − ξ2 + (Sξ1(ω0))

1/2
η2, (3)

whereλθ =
√(

E
2

)2
(1 + 9α2) − Δω̃2, α = 2s2Q3

ω6
0

α̃, E = Ẽ
s , Δω̃ = 2Q(ω0−ωE)

ω0
+ 3α

2 , Sξ1(ω) = 2
∫∞
0
〈ξ1(t)ξ1(t +

τ)〉 cos(ωτ )dτ, 〈η1,2(t)〉 = 0, 〈ηn(t)ηm(t + τ)〉 = δnmδ(τ). As stated above, we assume the multiplicative noise,ξ2, is
narrow-band and hence its correlation time is large(τc2 � 1). Furthermore, for a case of "strong" synchronization where
λθ � 1, the phase relaxation time,τθ = λ−1

θ , is small. Thus, if the magnitude of the multiplicative noise is much larger
than its additive counterpart in Eq. (3), i.e.,||ξ2|| � ||Sξ1(ω0)||1/2, we can set the time derivative on the left-hand side
(LHS) of Eq. (3) to zero and obtain the following approximationδθ ≈ 1

λθ

(
3α
2 δa − ξ2

)
. Substitution of this approximation

into Eq. (2) yields a single equation for the amplitude fluctuations,δ̇a = −Γδa + 2(Δω̃+3α)
1+9α2 ξ2 + (Sξ1(ω0))

1/2
η1,

whereΓ = 1 + 3α(Δω̃+3α)
1+9α2 . Thus, the variance of the amplitude fluctuations can be readily calculated and given by

〈δa2〉 =
Sξ1 (ω0)

2Γ [1 − exp(−2Γτ)] +
(

Δω̃+3α
1+9α2

)2 4Dξ2
Γ(1+τc2Γ)

[
1 − exp

(
−2Γ

1+τc2Γτ
)]

, where the second term on the right-

hand side (RHS) is obtained with the aid of a unified colored-noise approximation andDξ2 is the noise intensity ofξ2. At

steady-state,t → ∞, the variance of amplitude fluctuations reduces to〈δa2〉 =
Sξ1 (ω0)

2Γ +
(

Δω̃+3α
1+9α2

)2 4Dξ2
Γ(1+τc2Γ) . Hence,

for a large Duffing nonlinearity,α � 1/3, the steady-state variance reaches its minimal value due to two factors: (i)
the suppression of additive noise as a result of nonlinear damping enhancement, described by the first term on the RHS,
Γ|α�1/3/Γ|α=0 → 2, and (ii) the frequency-amplitude noise conversion is similarly reduced, as seen from the second
term on the RHS,Δω̃+3α

1+9α2 |α�1/3 → 0.
The experimental device has natural frequency,f0 = ω0/2π = 251(kHz), bandwidth of 2.8(Hz) which corresponds

to a quality factor,Q = 90, 000, and a dimensional Duffing nonlinearity,αd = 1.85×10−3(Hz/mV2), where the oscillator
frequency is measured asfosc = f0 + αd|x|2, and|x| is the oscillator amplitude measured in mV. The external signal is
setup to have a relative magnitude that is 10% that of the oscillator amplitude and a frequency offset ,Δf = f0 − fE ,
ranging from 0.06(Hz) to 4.3(Hz) depending on the oscillator amplitude. The amplitude of the oscillator is varied from
12(mV) to 150(mV), which corresponds to a range of non-dimensional Duffing nonlinear coefficients,α. Note that the
transition from linear to nonlinear behaviour,α ≈ 1/3, corresponds to an oscillator amplitude of 48.66(mV). Using the
assumptions made in the model and comparing the measured spectrum of the amplitude fluctuations for the free-running
and the synchronized oscillator, we obtain in a straightforward manner the noise levels of the additive and multiplicative
noises, which yield||ξ̃1(ω0)||2/(f4

0 〈x〉
2) = 1.4 × 10−7 and||ξ̃2||2/f4

0 = 1.54 × 10−4. However, for the multiplicative
noise, which assumed to be an Ornstein-Uhlenbeck process, the noise level is a combination of the noise intensity,D̃ξ2 ,
and the correlation time,tc2 . Thus, by setting̃Dξ2 = ||ξ̃2||2/f4

0 , we find optimal agreement between the model and the
measurements for a correlation time oftc2 = 1.215(sec). Figure 2 show a comparsion between the model prediction
and the experimental measurements. Note that in the nonlinear range (i.e.,〈a〉 > 48.66(mV)), both the model and the
measurements reveal a significant drop in the amplitude fluctuations, by two orders of magnitude. The most important
feature of these results is that the Duffing nonlinearity enables a new and efficient way to clean amplitude fluctuations
in synchronized oscillator, which together with the improved frequency fluctuations (due to synchronization), leads to a
significant enhancement of the oscillator performance.
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