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Summary. Lagrangian coherent structures (LCSs) are generalizations of classical invariant manifolds to time-aperiodic dynamical
systems defined over finite time intervals. Computing LCSs in three dimensional systems, however, remains challenging. Here we
present details of our numerical techniques and discuss several applications, in particular the dynamics of inertial particles in fluid
flows.

Introduction

Fluid flows observed in nature, experiments or numerical simulations often produce visually striking tracer patterns (cf.
Fig. 1). The ubiquity of these patterns even in complicated time-aperiodic flows suggests the existence of influential
and robust manifolds that create coherence in the configuration space of fluid particle positions. These manifolds act as
observable barriers to transport and have been termed Lagrangian coherent structures (LCSs) [1]. In the classic setting of
autonomous or time-periodic dynamical systems, similar transport barriers are, e.g., Komolgorov-Arnold-Moser tori.
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Figure 1: (a) Sea surface temperature in the Gulf Stream (Image: NASA), (b) tornado near Anadarko, Oklahoma (Image: NOAA), (c)
coherent vortex ring (blue) exerting exceptional impact on nearby tracer particles (red) (Image: David Oettinger).

Mathematical Setting: Finite-time Dynamical Systems

Since fluid velocity fields obtained from measurements and numerical computations are only available for finite time
intervals, we consider the finite-time dynamical system

ẋ = v(x, t), x ∈ U, t ∈ [t0, t1], (1)

where v is a smooth three-dimensional vector field on an open set U ⊂ R3 with arbitrary smooth dependence on time t;
t0, t1 are initial and final times. For any two times ta, tb ∈ [t0, t1], trajectories of (1) define the flow map F tb

ta : xa 7→ xb

that uniquely maps the time-ta position xa of any particle to its time-tb position xb (cf. Fig. 2(a)). By a particle we
mean either a fluid particle following precisely the surrounding fluid velocity field u, i.e., v = u, or an inertial particle
following a vector field v that deviates from u. We note that even though many concepts we present here are motivated
by applications to fluid dynamics, they remain well-defined for any differentiable dynamical system.
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Figure 2: (a) Flow map F t1
t0

mapping initial material positions at time t0 to their final positions at t1, with the gray lines indicating
trajectories of (1). (Image: David Oettinger) (b) FTLE visualization of an ABC flow, with low FTLE values (blue) highlighting vortical
regions, and high FTLE values (red) highlighting hyperbolic structures. (Image: David Oettinger)

The derivative DF t1
t0(x0) of the flow map at any time-t0 position x0 is known as the deformation gradient. We can

view DF t1
t0(x0) as a three-by-three matrix containing local information on how the fluid stretches and shrinks between

times t0 and t1. In particular, the largest singular value of DF t1
t0(x0) is the finite-time Lyapunov exponent (FTLE, see,

e.g. [1]), highlighting locations of exceptional separation in the fluid flow. In applications, FTLE fields have become a
widely-popular diagnostic for generalized stable and unstable manifolds (repelling and attracting hyperbolic LCSs, cf.
Fig. 2(b)).
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LCSs in Three Dimensions and Computational Challenges

In recent years, well-documented shortcomings of using FTLE features to define LCSs have led to the development of
variational LCS theories [1]. In three dimensions, variational definitions of hyperbolic and elliptic LCSs (generalized
invariant tori and cylinders) are available [2, 3]. Recently, we have observed that all LCSs in three dimensions are two-
dimensional invariant manifolds of an autonomous dynamical system defined on the flow domain at the fixed time t0 (cf.
[4] and Fig. 3). Specifically, this autonomous system is given by

x′
0 = ξ2(x0), (2)

where x0 denotes time-t0 positions, and ξ2(x0) is the intermediate right-singular vector of the deformation gradient
DF t1

t0(x0). Here we address technical challenges that arise in the computation of LCSs for finite-time systems (1)
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Figure 3: (a) Hyperbolic and elliptic LCSs in a time-aperiodic ABC-type flow [4] (b) Consecutive snapshots of a velocity field compo-
nent in forced isotropic turbulence (Image: David Oettinger, with data obtained from the JHTDB at http://turbulence.pha.jhu.edu)

given by numerical data (cf. Fig. 3 (b)): in particular, the interpolation of the velocity field, grid resolution, numerical
preservation of incompressibility, and discretization of the domain of initial positions x0.

Accumulation of Inertial Particles

Another direction of new developments is understanding the dynamics of inertial particles in three-dimensional unsteady
flows (small bubbles or heavy particles). To leading order, these obey the inertial equation

ẋ = v(x, t) = u(x, t) + εDxu(x, t), (3)

where u is the fluid velocity field and ε > 0 is a small parameter [5]. Even for incompressible fluids, the system (3) is
generally dissipative, i.e., ∇ · v 6= 0. Inertial particles are hence expected to accumulate on attractors. For the general
setting of three-dimensional unsteady flows (1), however, no generally-accepted method for identifying all the attractors
of (3) has emerged. Here we apply our techniques for three-dimensional LCSs and compute transport barriers for inertial
particles in practically relevant applications (cf. Fig. 4).

Figure 4: Invariant manifolds (yellow) causing the capture of gas bubbles in a hydrodynamic flow through a V Junction, together with
representative bubble trajectories (green and red). (Image: David Oettinger, from joint work with Jesse T. Ault and Howard A. Stone)
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