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Spectral Submanifolds and Exact Model Reduction for Nonlinear Beam Dynamics
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Summary. We use invariant manifold results on Banach spaces to conclude the existence of spectral submanifolds (SSMs) in a class of
nonlinear, externally forced beam oscillations . Reduction of the governing PDE to the SSM provides an exact low-dimensional model
which we compute explicitly. This model captures the correct asymptotics of the full, infinite-dimensional dynamics. Our approach
is general enough to admit extensions to other types of continuum vibrations. The model-reduction procedure we employ also gives
guidelines for a mathematically self-consistent modeling of damping in PDEs describing structural vibrations.

Extended Abstract

We will be concerned with the nonlinear partial differential equation{
utt − µuttxx = −αuxxxx + βutxx − γu− δut − f(u)− εh(x, t)
u(0, x) = u0(x), ut(0, x) = v0(x),

on the interval (0, π), describing the vertical displacement u of a thin beam of length π supported on a nonlinear founda-
tion with initial configuration u0 and initial velocity distribution v0.

The parameters relate to material constants of the beam, cf. [3]. The function h, which we assume to be ω-periodic
in time, describes external forcing for some small parameter ε, while the numerical function f : R → R describes the
nonlinear interaction of the beam with the foundation. An example would be a thin beam supported on a bed of cubic
springs, cf. [4].

-0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

Figure 1: The spectrum of the linearized flow map

First, we show existence and uniqueness of solutions in a suitably chosen Sobolev space. This is done by classical semi-
group techniques, making certain regularity assumptions on the nonlinearity. For ε > 0, existence of a periodic orbit to
the full equation is proved by passing to a section of the return map and using a standard fixed-point argument. An energy
estimate guarantees global existence of solutions, hence permitting us to define a flow map for this equation acting as a
diffeomorphism on the underlying space.

Due to the nature of the damping, the spectrum of the linearization of the flow map is contained in unit circle, is bounded
away from zero and has decreasing real parts, cf. Figure 1. This is only guaranteed by the inclusion of the parameter
µ 6= 0, accounting for small rotational inertia. Also, the balance of the elastic damping to the small rotational inertia
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is crucial to justify our calculations. In fact, for ε = 0, we may write down the spectrum of the linearized flow map
explicitly:

σ(A) =

exp

− βn2 + δ

2 + 2µn2
±

√(
βn2 + δ

2 + 2µn2

)2

− αn4 + γ

1 + µn2


n∈N

.

In the case of non-zero ε, analytical spectral perturbation theory justifies the assertion.

We observer that if the damping term becomes dominant, the equation loses its group property therefore invertability of
the linearized flow map. This feature only becomes present in infinite-dimensional spaces, i.e. when studying partial
differential equations, and is not a handicap in mechanical systems, i.e. ordinary differential equations.

In this setup, we may apply a theorem on the existence of submanifolds associated to spectral subspaces [1] to conclude
that the dynamics may be described by the flow on some finite dimensional space. This is achieved by an asymptotic
expansion of the invariant manifold and the projection onto a finite number of Fourier modes. In particular, we may
conjugate the dynamics of the full partial differential equation to some system of ordinary differential equations. For
physically reasonable parameter ranges, in particular assuming small damping, we infer that the invariant manifold in-
deed is a slow manifold for the full system. This procedure can be interpreted as an infinite-dimensional equivalent to [2].

We illustrate this technique on a concrete example, in which project on a single mode in the Fourier expansion, obtaining
the dynamics of a weakly attracting focus, cf. Figure 2. Here, the expansion is carried out up to third order making use of
the near-resonant nature of the eigenvalues of the linearization, as it is also done in [5] for finite-dimensional systems.
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Figure 2: A typical phase portrait for the reduced system
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