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Summary. Underactuated robotic locomotion systems are commonly represented by nonholonomic constraints where in mixed systems, 
these constraints are also combined with momentum evolution equations. Such systems have been analyzed in the literature by 
exploiting symmetries and utilizing advanced geometric methods. These works typically assume that the shape variables are directly 
controlled, and obtain the system's solutions only via numerical integration. In this work, we demonstrate utilization of the perturbation 
expansion method for analyzing a model example of mixed locomotion system -- the twistcar toy vehicle, which is a variant of the well-
studied roller racer model. The system is investigated by assuming small-amplitude oscillatory inputs of either steering angle (kinematic) 
or steering torque (mechanical), and explicit expansions for the system's solutions under both types of actuation are obtained. These 
expressions enable analyzing the dependence of the system's dynamic behavior on the vehicle's structural parameters and actuation type. 
In particular, we study the reversal in direction of motion under steering angle oscillations about the unfolded configuration, as well as 
influence of the choice of actuation type on convergence properties of the motion. Some of the findings are demonstrated qualitatively 
by reporting preliminary motion experiments with a modular robotic prototype of the vehicle.  
 
Underactuated systems whose dynamics is governed by nonholonomic constraints have been a subject of extensive 
research for several decades [1-3]. While the earliest example of a nonholonomic system is the classical Chaplygin's 
sleigh [4], other typical examples of such systems are wheeled toy vehicles such as the snakeboard [5], roller racer  
[6-9] and more [10-13]. In the literature on robotic locomotion [14,15], many works have analyzed various 
locomotion systems subject to nonholonomic constraints, studying aspects such as nonlinear controllability and gait 
generation. One simple subclass of locomotion systems is principal kinematic systems [16], whose motion is time-
invariant and depends only on geometric trajectories of shape variables (e.g. joint angles). On the other hand, the 
snakeboard and roller-racer examples belong to the more general class of mixed systems, where the motion is dynamic 
and governed also by momentum evolution in time. In a majority of previous works, it has been assumed that the 
controlled inputs are shape variables, which can be prescribed directly or via closed-loop feedback control in order to 
follow periodic trajectories (gaits). On the other hand, there are many practical cases where the controlled actuation is 
mechanical, i.e. forces or torques. Moreover, many systems do not employ closed-loop control due to practical 
limitations and apply open-loop oscillatory inputs instead [17].  
In order to analyze locomotion systems under oscillatory inputs, Vela et al [18,19] developed an averaging theory for 
studying asymptotic solutions while assuming small-amplitude inputs. This theory utilizes separation of scales in the 
system's solution into fast oscillatory dynamics and slow 'averaged' dynamics. While this technique seems fairly 
general, it has been applied in [18,19] mainly for studying controllability and feedback stabilization of locomotion 
systems, where the controlled inputs were again limited to shape variables, i.e. kinematic actuation. Another 
asymptotic method which has recently been employed for locomotion dynamics, and to microswimmers in particular 
[20], is perturbation expansion [21]. The main advantage of this method is that it results in explicit expressions for 
the system's approximate solution under small-amplitude inputs, in contrast to other works in which solutions of the 
nonlinear equations of motion could only be obtained via numerical integration. The explicit expressions obtained 
from perturbation expansion enable analyzing dependence of the system's dynamic behavior on structural parameters 
and can also be utilized for optimizing the system's performance. To best of our knowledge, the perturbation 
expansion method has not yet been applied to mixed locomotion systems governed by nonholonomic constraints 
combined with momentum evolution.  
The goal of this work (recently published in [22]) is to demonstrate the utility of perturbation expansion method for 
analysis of mixed locomotion systems, by providing a detailed investigation of a particular example problem -- the 
twistcar, which is a popular children's toy vehicle shown in Fig. 1(a). The twistcar has two axles of passive wheels 
and its only actuation is through cyclic oscillations of the steering handlebar, which makes it a highly underactuated 
system. Nonholonomic constraints are induced by the assumption that the wheels cannot slip sideways along the 
directions of their axles. We consider oscillatory inputs of either steering handlebar angle (kinematic) or the applied 
steering torque (mechanical). Perturbation expansion method is used in order to obtain explicit solutions under small 
amplitude approximation. It is shown that the cases of steering angle input and torque inputs differ fundamentally in 
terms of convergence or divergence of the vehicle's orientation angle. The latter case is further analyzed by obtaining 
the averaged solution which evolves on a slower time scale. Moreover, we show that changing the vehicle's structural 
parameters can have a drastic effect on the dynamics, and may even result in reversal of the direction of the vehicle's 
net motion. 
The simple planar model of the twistcar, shown in Fig. 1(b), is in fact very similar to the roller-racer model, which 
has been studied extensively in the literature on nonholonomic mechanics [6-9]. The main difference between the two 
models is the fact that in the twistcar (TC), the relative angle of the steering link oscillates about φ=0 whereas in the 
roller-racer (RR) the link is "unfolded" and oscillates about φ=π. The works [6-9] have made two additional 
simplifying assumptions on the roller-racer model, which are questionable: first, they assumed that the steering link 
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Fig. 1: (a) The twistcar toy vehicle, and (b) its planar two-link model. 

(a)  (b)  

has zero mass and nonzero moment of inertia, which is unphysical. Second, they assumed that the center-of-mass of 
the body link is located on the back axle (i.e. l1=0 in Fig. 1(b)), while in reality this may result in tendency of the 
vehicle to tip over. Like many other works on robotic locomotion systems, [6-9] also assumed that the actuation input 
is the steering angle φ(t) rather than the applied steering torque τ(t). All these assumptions are relaxed in our present 
study. Furthermore, in order to make our analysis accessible to a broader audience of the robotics research 
community, we chose not to use advanced notions of geometric mechanics such as Lie groups and Riemannian 
geometry as in previous works. Instead, the results are presented using elementary terminology of linear algebra, 
vector calculus, and ordinary differential equations. We also report preliminary motion experiments on a robotic 
prototype, that qualitatively demonstrate some of the theoretical results.  
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