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Summary. The emergence of sensing concepts that capitalize on the rapidly increasing availability of sensor controllable degrees of
freedom, ranging from sensor operating modes to physical control of the platforms carrying the sensors, require new optimal control
theory-based strategies for data assimilation of high-dimensional complex systems. In this paper, we consider the application of infor-
mation theoretic concepts for constructing useful optimization problems for a controllable tracer in a two vortex flowfield; formulations
and their effectiveness are demonstrated through numerical simulations, with insightful comments regarding future improvements.

Introduction

A motivating application for the work contained in this paper, pertains to estimation of states for climate modeling. Accu-
rate climate models can only be obtained by combining the models with data. Contrary to standard initial value problems,
we do not have access to the initial state of these dynamical systems. Instead, we have a known initial probability density
function for the initial state and treat the model states as realizations of a random variable. Lower dimensional climate
models can comprise of resolved climate modes and noise terms that account for the interaction of the resolved and un-
resolved non-climate modes. The problem of climate prediction requires efficient new algorithms to estimate the present
and future state of the climate models, based upon corrupted, distorted, and possibly partial observations of the climate
modes and fast evolving non-climate modes. While perfect determination of the state is impossible under these noisy
observations, it may still be desirable to obtain probabilistic estimates of the state conditioned on the information that is
available.
Nonlinear filtering is well-established for the problem of estimation of partially observed states from noisy observations.
But advancements in sensing and data collection technology, allow for the possibility of improving the observations
available for filtering. Sensors can be designed or manipulated such that the observation obtained contains more useful
information for estimating the signal process. In this paper, we consider a realistic problem of controlling a sensor
platform (e.g. an unmanned aerial vehicle) to collect the most useful information at each observation time. We will
consider the case of discrete, sparse observation in time. A control strategy should then be selected to extremize a certain
cost functional that is useful for improving the data assimilation process.
We will begin the paper by introducing the equations of motion for the nonlinear vortex flowfield; specifically, considering
the case of an extended state system where the states of the controllable tracer are appended to the states of the vortices.
We recall the pertinent equations for the ensemble Kalman filter (EnKF), a Monte Carlo based filter, and make clear the
observation process that we will use. Next, we demonstrate the general filtering behavior for Monte Carlo based filters
like the EnKF or sequential importance sampling (SIS) particle filter (PF) when applied with modest filtering parameters
to the uncontrolled nonlinear two vortex problem; the results, providing motivation for the remainder of the paper. We
will then propose cost functionals in terms of information theoretic concepts and describe how these can be efficiently
computing when using the EnKF of an SIS PF. Lastly, we provide numerical simulations motivating further investigation
and understanding of appropriate information theoretic cost functionals.

Vortex Flowfield

A planar vortex flowfield model is used in this paper as a low-dimensional nonlinear stochastic test-bed, by which we can
validate our sensor-theoretic strategies. The first random point vortex method to simulate viscous incompressible flow
was introduced in [6] and [15, 1] have shown that a stochastic vortex dynamical model approximates the evolution of
vorticity with viscosity, in the same way that the deterministic vortex dynamics simulates the Euler equations. Detection
of vortices in data assimilation [5] and observability of vortex models using both Eulerian and Lagrangian tracers have
been investigated [11]. The i-th vortex center dynamics in a viscous flowfield is governed by a Langevin equation [1];
here we write an equivalent Itô stochastic differential equation (SDE) form:

dXi,t =
1

2π

n∑
k=1

Γk
‖Xk,t −Xi,t‖22

J(Xk,t −Xi,t)dt+
√
σxdBi,t, J ≡

 0 1

−1 0

 , Xi,0 = x ∈ R2, (0.1)

where we define 0/0 ≡ 0, Xi,t ∈ R2, Γk ≥ 0 is the strength of the k-th vortex; any vortex with Γk = 0 is termed a
Lagrangian tracer, and Bi is the signal noise, a standard Brownian motion with each Bi independent, and σx > 0. To
define the dynamics succinctly, let

Xt ≡ (X1
1,t, X

2
1,t, . . . , X

1
n,t, X

2
n,t),

where superscripts indicate the components of each vortex center. We will augment our state dynamics to include control
and introduce an observation process that will be used in our filtering equations. The control augmented state dynamics
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are:
dXi,t = fi(Xt) + bi(ui,t) +

√
σxdBi,t and ui,t ∈ U (0.2)

Here fi is the nonlinear drift vector field given in Equation (0.1), and bi is a nonlinear function of the control ui, a
candidate control solution from the admissible control set U . Since we will only be interested in controlling the tracers, if
Xi is a vortex, then we impose the constraint that bi = 0 for all t.
The observation process is defined as follows:

dYt = h(Xt)dt+
√
σydWt, Y0 = 0 ∈ Rd

Here h is the sensor function, Wt is the sensor noise, a standard Brownian motion independent of signal noise processes
Bi, and σy > 0. If considering random initial conditions for X0 and Y0, then these are to also be assumed independent of
each other and the signal and observation noise processes.
For the specific problem studied below, we will consider a two vortex and single controllable tracer system. Hence
X ∈ R6 and we consider nearly perfect observation of the tracer position and velocity, giving h : R6 → R4. Therefore
we never directly observe the states of the vortices.
We will consider discrete (sparse) in-time observations; a natural consideration for climate prediction problems. Therefore
let us adopt a notation of using subscript k to indicate the index of an enumeration of a sequence of times {tk}, that
uniformly partition the full simulation time [0, T ]; where ∆t will designate the difference between any two adjacent times
in the sequence (e.g. ∆t = |tk − tk−1|). With this notation, a sequence of observations and controls would be {yk} and
{uk} respectively.

Filtering Theory and the Ensemble Kalman Filter

Nonlinear Filtering Theory
The objective of nonlinear filtering is to solve for the normalized conditional measure [4], πt(ϕ), acting on a continuous
bounded functional, ϕ(x), conditioned on the observation process Yt; succinctly,

πt(ϕ) ≡ EQ [ϕ(Xt) | Yt] with Yt ≡ σ({Ys | s ∈ [0, t]}),

where Yt is the sigma-algebra generated by Ys up to time t and Q is the probability measure of an abstract probability
space (Ω,F ,Q). The conditional measure πt then represents the ’best’ estimate of ϕ(x) given all observation information
up to time t. As a conditional expectation, πt is a contraction map and in the case of L2 functions, is an orthogonal projec-
tion onto a Hilbert subspace spanned by the past observations. With a change of measure via a Girsanov transformation
[10], one arrives at an evolution equation describing the motion of the unnormalized conditional measure, such that in the
case that the new measure P is absolute continuous with respect to Lebesgue measure, this equation can be described in
terms of density; a linear partial differential equation - the Zakai equation:

dρϕt (x) = Gρϕt (x)dt+ ρϕt (x)h∗dYt (0.3)

G is the generator of the signal process, (·)∗ indicates the adjoint, and Yt is a standard Brownian motion under P. Closed
form solutions of Equation (0.3) rarely exists, requiring restrictive conditions for their existence. The best known example
of a closed form solution is for the case of linear signal and observation processes driven by standard Brownian motion,
resulting in the linear Kalman filter. Sequential Monte Carlo based methods are commonly employed for the general
nonlinear filtering problem, for example the ensemble Kalman filter or particle filters [9, 3, 17]. For brevity, we focus
on the EnKF in this paper and all results present are for this type of filter algorithm; we will provide pertinent remarks
regarding application with sequential importance sampling PF algorithms.

Ensemble Kalman Filter
The EnKF can be viewed as a Monte Carlo approximation of the classical Kalman filter. It uses the full nonlinear dynamics
for the prediction step of the algorithm and mimics the linear Gaussian update step of the Kalman filter; using the Jacobian
of the sensor function, ∇xh, and forming a sample prior error covariance, C, in lieu of propagating an error covariance
matrix. The EnKF is numerically advantageous for large data assimilation problems where the assumption of Gaussian
statistics is appropriate. The assumptions made for the update step of the EnKF also allow for convenient simplifications
and reformulations of various entropy relations, as will be seen later in the paper.
The pertinent equations of the EnKF for our two vortex, one tracer problem with discrete-time observations (see [9] for
further details) are as follows. At time k, an ensemble of Ns ∈ N particles {qjk|k ∈ R6}Ns

j=1 represents the posterior

density p(xk|yk), which is assumed to be Gaussian with mean Xk =
∑
qjk|k/Ns. A prior density, p(xk+1|yk) is then

constructed at time k+1, by advection of the ensemble {qjk|k} under the nonlinear dynamics given by Equation (0.2). The

mean of the prior density,Xk+1|k =
∑
qjk+1|k/Ns is the best estimate of the signal process at time k+1 with information

up to time k. The sample prior error, Ak+1 ∈ RNs×6 is defined as:

Ak+1 ≡
[
q1
k+1|k −Xk+1|k

∣∣∣ . . . ∣∣∣ . . . ∣∣∣ qNs

k+1|k −Xk+1|k

]T
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The sample prior error covariance, C ∈ R6×6, is then a non-negative symmetric matrix defined as:

Ck+1 ≡
1

N − 1
ATk+1Ak+1 (0.4)

The innovation covariance is defined as:

Sk+1 ≡ Rk+1 +∇xh
∣∣
Xk+1|k

Ck+1(∇xh)T
∣∣
Xk+1|k

(0.5)

whereRk+1 = R ∈ R4×4 is the observation noise covariance, a symmetric positive definite matrix. We assumeR to be of
the form σyI4×4, where I is the identity matrix. The sample Kalman gain is defined asKk+1 ≡ Ck+1(∇xh)T

∣∣
Xk+1|k

S−1
k+1

and the innovation for the j-th member of the ensemble is yk+1 − h(qjk+1|k). Then the update of each member of the

ensemble {qjk+1|k+1} is:

qjk+1|k+1 = qjk+1|k +Kk+1

[
yk+1 − h(qjk+1|k)

]
The posterior density p(xk+1|yk+1) is now approximated by {qjk+1|k+1} and the mean Xk+1|k+1 =

∑
qjk+1|k+1/Ns;

completing one iteration of the EnKF algorithm.

EnKF - No Control
We provide numerical solutions of two test cases that capture the typical behavior that may be seen when applying the
EnKF to the two vortex, one tracer problem with modest EnKF filter parameters. Similar behavior is seen with SIS PF.
Let us denote the true signal process as X̃k. We will assume perfect knowledge of the signal states at t = 0; that is
X0 = X̃0. We will use an Euler-Maruyama integration scheme with integration step size of δt = 0.01 over a time interval
of [0, T = 30]. We consider discrete-time observation with observation step size ∆t = 10δt and define σ2

x = 3E-2,
σ2
y = 5E-4. Lastly, the number of particles used in the simulation will be Ns = 10, the first vortex with strength Γ1 = 1

will have initial condition (−1, 0) and the second vortex with strength Γ2 = 2 will have initial condition (0, 1).
Figure (1a) shows the EnKF behavior for the aforementioned filter parameters for a single (typical) realization when the
tracer starts with perfect knowledge of the vortices position and itself with the same initial conditions as the Γ1 = 1
vortex; that is (-1, 0). Figure (1a) shows the states up to t = 27, with noticeable filter divergence occurring. In the
deterministic setting, if the tracer starts with the same initial conditions as the Γk vortex, then it will have the same state
as Γk for all t. Therefore the tracer dynamics are only dependent on the position of the Γj 6=k vortex; implying that the
problem becomes a single vortex - single tracer scenario. In the stochastic setting, with probability one the tracer will
be perturbed off of the Γk vortex. As can be seen from Equation (0.1), the normalizer goes as the square of the distance
and therefore the vector field is singular at the location of a vortex. So although being close to a vortex should result in a
dimensional reduction, it results in a typical lose of filtering robustness and eventual filter divergence. We note here that
due to numerical difficulties, and our use of a fixed step integration scheme, we set the forcing term, in Equation (0.1),
associated with the Γk vortex to zero if the tracer has an l2 distance of 1E-1 from the vortex center. Therefore the filtering
result shown in Figure (1a) is actually nicer than it would be in reality.

(a) Tracer with initial position (−1, 0), the same as
the vortex Γ1 = 1

(b) Tracer with initial position (0, 0)

Figure 1: Trajectory paths: vortex signals X0, X1, vortex estimates X2, X3, tracer signal X4, tracer estimate X5, and
vortex signal mean X6. The vortex with Γ1 = 1 has initial state (-1, 0). The second vortex with Γ2 = 2 has initial state
(0, 1).
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Figure (1b) shows the EnKF behavior, again for the aforementioned parameters, for a single (typical) realization of the
tracer starting at the origin (0, 0) and with perfect initial knowledge of the vortex positions. The signal path of the vortices
in Figure (1b) is the same as that shown in Figure (1a), but here we show up to time t = T = 30. We will use continue
to use these two configurations and always the same signal path in the results to follow. Figure (1b) shows that estimation
of the unobserved signal dynamics appears superior when starting with this geometry, as direct interference with a vortex
is unlikely. Yet, it is quite clear that even with this geometry, the EnKF estimate begins to diverge late in the simulation.

EnKF - Regulator Control
In Figures (1a) and (1b), we have also plotted the mean of the vortices. In this subsection, we show numerically that a
control solution that stations the tracer near the mean of the vortices results in robust and accurate estimation. First let
us describe the general control strategies that we consider in this paper. Then we will define the control solution used for
regulation of the tracer about the mean of the vortices and lastly provides comments on the solution behavior using such
a control strategy.
Let No ≡ T/∆t be the number of discrete observations for a given simulation, Mθ,MG ∈ N, G > 0, and define the
following sets:

Θ ≡ {2πn/Mθ | n ∈ [0, 1, . . . ,Mθ − 1]} and G ≡ {nG/MG | n ∈ [0, 1, . . . ,MG]}

Then the admissible control set is defined as U ≡ (Θ×G)
No . An example of a control target showing a slice Θ ×G of

the admissible control set with Mθ = 12, MG = 6 and G = 0.5 is shown in Figure (2a); G represents the largest control
gain that can be applied. In implementation, we consider choosing the values of our control strategy from one observation
to the next. The control function is then defined as a constant forcing from one observation to the next as follows: if
Γk > 0, we define bk = 0 ∀k in Equation (0.2) and otherwise bk(uk) = [uk,2 cos(uk,1), uk,2 sin(uk,1)]T . Let us consider
a simple feedback control law for this section by choosing the control at each time k to be:

uk ≡ argmin
u∈Θ×G

‖(mk − tk|k)/∆t− b(u)‖2

where mk is the estimate of the vortices center at time k, tk|k is the posterior estimate of the position of the tracer.
Figure (2b) shows the implementation of this control strategy, with an admissible control slice shown in Figure (2a),
for the same problem as considered in Figure (1a). The control strategy prevents divergence of the filter and improves
estimation beyond that shown for the case of no control and initial condition of (0, 0), see Figure (1b). If one does not
start with perfect initial conditions, then such a strategy would not be as successful, as it is dependent on having fair
knowledge of the mean of the vortices. In the next section, we introduce information theoretic concepts that could be used
to construct useful cost functionals, with the aim that choosing a control strategy u ∈ U to maximize (minimize) a given
cost functional should result in a control strategy the improves the data assimilation process, both in terms of robustness
(i.e. low probability of filter divergence) and accuracy.

(a)

A depiction of the set of admissible controls from one
observation k to the next k + 1. The control is param-
eterized by an angle and gain (θk, γk). The color bar
shown here is irrelevant, but is used in later figures to
show the cost function associated with choosing a given
control.

(b)

Tracer with initial position (−1, 0) and
using a feedback control law that drives it to-
wards the mean of the prior at each observation.

Figure 2: Trajectory paths: vortex signals X0, X1, vortex estimates X2, X3, tracer signal X4, tracer estimate X5, and
vortex signal mean X6. The vortex with Γ1 = 1 has initial state (-1, 0). The second vortex with Γ2 = 2 has initial state
(0, 1).
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Information Theoretic Cost Functionals

In this section, we first introduce several entropy concepts that will be used in the construction of information theoretic cost
functionals, then we describe potential cost functional candidates and lastly demonstrate through numerical simulation
their effectiveness for the two vortex, single tracer problems consider previously. We refer the reader to [7] for more
details regarding the definitions given below. We start with the most important definition, that is Shannon entropy.

Definition 0.1 (Shannon Entropy). Shannon entropy, an absolute entropy, quantifies the information content of a random
variable, or how much memory (for example, in bits, if using log2) is required to store the information required to describe
the random variable. It can be interpreted as how much uncertainty there is about the random variable. For a continuous
random variable, its entropy H(X) as a measure with respect to its density is:

H(X) ≡ −
∫
X
p(x) log p(x)µ(dx)

From here on, if we refer to the entropy of a random variable, one may assume that we are referring to Shannon entropy.

In the case of a random variable X with normal distribution N (ν,Σ), the entropy of X is H(X) = log((2πe)d|Σ|)/2,
where | · | will denote the determinant and d is the dimension of Σ ∈ Rd×d. Joint and conditional entropy between two
random variables are defined similarly,

H(X,Y ) ≡ −
∫
X×Y

p(x, y) log p(x, y)µ(dx⊗ dy) and H(X|Y ) ≡ −
∫
X×Y

p(x, y) log p(x|y)µ(dx⊗ dy)

Definition 0.2 (Kullback-Leibler Divergence). Kullback-Leibler divergence, abbreviated as DKL, is a relative entropy
that quantifies the ’distance’ between two densities; quotes needed, since it does not satisfy all requirements for being a
metric. Given densities p and q, their KL divergence is defined as:

DKL(p||q) ≡
∫
X
p(x) log (p(x)/q(x))µ(dx)

If p is the actual density for a random variable X, then DKL(p||q) can be interpreted as the loss of information due to
using q instead of p.

Definition 0.3 (Mutual Information). Mutual information between two random variables is the relative entropy between
the joint density and the product of the marginal densities.

I(X;Y ) ≡
∫
X×Y

p(x, y) log (p(x, y)/p(x)p(y))µ(dx⊗ dy)

It can be shown that I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) by symmetry; a most useful property that we
exploit below. Hence, mutual information represents the reduction of entropy (uncertainty) in one random variable due to
the knowledge of another random variable.

Cost Functionals
In this subsection, we will define several cost functionals J(uk|y0:k−1), that will allow us to determine the ’best’ control
uk ∈ Θ×G, to be applied during the integration from time k− 1 to time k; when the next observation will be made. The
’best’ control will be the one that maximizes J(uk|y0:k−1); that is,

uok ≡ argmax
uk∈Θ×G

J(uk|y0:k−1) (0.6)

Therefore the cost functional should guide the tracer to locations that ’best’ improve the data assimilation process. A
natural quantification of ’best’ over one observation step becomes a complex question if we are trying to balance estimate
improvement over a single observation step versus long term quality of estimate, and also taking into consideration the
physical limitations of our tracer. Regardless, an appropriate cost functional serves the purpose of embodying this idea.

KL Maximization
The first cost functional that we consider is the maximization of the KL divergence of the posterior and prior densities,
p(xk|y0:k;uk) and p(xk|y0:k−1):

J(uk|y0:k−1) =

∫
Y
DKL(p(xk|y0:k;uk) || p(xk|y0:k−1;uk))p(yk|y0:k−1;uk)dyk (0.7)

The KL divergence is dependent on Yk, which is only available after we have selected a control strategy uk. Therefore,
in the general setting, we must take the expectation of the KL divergence over all possible Yk, given the prior density
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and control selection uk. The motivation for maximizing expected KL divergence, is that the optimal admissible control
solution u0

k will force a posterior that is distant from the prior and therefore is likely to produce new information. If
the posterior density is statistically close to the prior, then very little new information was gained during the previous
observation. Initial work on optimal sensor path control based on an information theoretic cost functional of this type was
initiated in [13, 14] and furthered in [18], although others have pursued similar studies [8, 12, 16, 2]. Several applications
of Bayes’ Theorem relates the KL divergence to conditional entropy of the signal given observation:

J(uk|y0:k−1) =

∫
Y
DKL(p(xk|y0:k;uk) || p(xk|y0:k−1;uk))p(yk|y0:k−1;uk)dyk

=

∫
Y

[∫
X
p(xk|y0:k;uk) ln

p(xk|y0:k;uk)

p(xk|y0:k−1;uk)
dxk

]
p(yk|y0:k−1;uk)dyk

=

∫
Y

[∫
X

p(xk, yk|y0:k−1;uk)

p(yk|y0:k−1;uk)
ln

p(xk|y0:k;uk)

p(xk|y0:k−1;uk)
dxk

]
p(yk|y0:k−1;uk)dyk

=

∫
Y

∫
X
p(xk, yk|y0:k−1;uk) ln p(xk|y0:k;uk)dxkdyk −

∫
Y

∫
X
p(xk, yk|y0:k−1;uk) ln p(xk|y0:k−1;uk)dxkdyk

=

∫
Y

∫
X
p(xk, yk|y0:k−1;uk) ln p(xk|y0:k;uk)dxkdyk −

∫
X
p(xk|y0:k−1;uk) ln p(xk|y0:k−1;uk)dxk

= H
∣∣
y0:k−1

(Xk)−H
∣∣
y0:k−1

(Xk|Yk;uk)

Then using the symmetry property of mutual information given in Definition (0.3), we also get:

J(uk|y0:k−1) = H
∣∣
y0:k−1

(Yk;uk)−H
∣∣
y0:k−1

(Yk|Xk;uk) (0.8)

Typically one must settle for brute force evaluation (e.g. Monte Carlo methods) of the entropy terms just defined to
evaluate J(uk|y0:k−1), but in the case of an update scheme that assumes a linear sensor function and Gaussian statistics
for the densities, we can then exploit the comment made in Definition (0.1). Specifically, the terms comprising the
relations to J become:

H
∣∣
y0:k−1

(Xk) =
1

2
ln(2πe)d

∣∣Ck|k−1

∣∣
H
∣∣
y0:k−1

(Xk|Yk;uk) =
1

2
ln(2πe)d

∣∣Pk|k∣∣
H
∣∣
y0:k−1

(Yk|Xk;uk) =
1

2
ln(2πe)d

∣∣Rk∣∣
H
∣∣
y0:k−1

(Yk;uk) =
1

2
ln(2πe)d

∣∣Sk∣∣
The definition of Sk was given in Equation (0.5) and we further note that here we have specialized these definitions to
match their use with the EnKF. Of importance is the fact that Equation (0.8) is written only in terms of the prior and
therefore in the application of the EnKF with this control functional, we will not require taking the expectation over all
possible observations; this component is already contributing via H(Yk;uk). In the case of application with an SIS PF, it
is best to use Equation (0.7) directly, since in this case the prior and posterior distributions have the same support; a linear
combination of weighted Dirac distributions. In general, one must still account for virtual observations with the SIS PF.
But for problems with small sensor noise, few observation realizations will be required.

Prior Error Minimization
A second cost functional of interest, is minimization of the prior error:

J(uk|y0:k−1) = −H
∣∣
y0:k−1

(Xk) = −1

2
ln(2πe)d

∣∣Ck|k−1

∣∣ (0.9)

We still write the cost functional as a maximization problem for consistency with Equation (0.6).

Weighted Marginal, KL Maximization
Lastly, let αk ∈ [0, 1] and consider the following cost functional,

J(uk|y0:k−1) = αkH
1
∣∣
y0:k−1

(Yk;uk)− (1− αk)H2
∣∣
y0:k−1

(Yk;uk)

=
αk
2

ln(2πe)d
∣∣S1
k

∣∣+
(1− αk)

2
ln(2πe)d

∣∣S2
k

∣∣ (0.10)
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where S1
k and S2

k are the marginal innovation covariances. The choice of αk may be chose at each time k to emphasis that
information gain should come more from one source than another. Intuitively, if at time k−1, the second vortex contribute
more to the information gain, then an observation at k may be better suited for filter stability over greediness of apparent
information gain from the second vortex. In this example, α→ 1 momentarily. The reasoning for this consideration will
be made clear by the numerical examples that we next consider.

Numerical Results
In this section, we provide numerical results demonstrating the typical behavior of the EnKF estimates when filtering is
conducted in conjunction with an optimal control problem specified by either Equation (0.7), (0.9) or (0.10). Consider the
same problem setup as that introduced in the no control and regulator control cases. Solving the aforementioned problem
with T = 10 and using Equation (0.7) as the cost function results in a typical solution path as shown in Figure (3). The
associated cost is also shown in Figure (3) and the costs associated with admissible control strategies at time tk = 0.0 and
tk = 5.8 are shown in Figure 4a) and (4b) respectively.

Figure 3: Trajectory paths: vortex signals X0, X1, vortex estimates X2, X3, tracer signal X4, tracer estimate X5, and
vortex signal mean X6 for the case of KL maximization, Equation (0.7).

(a)
The admissible controls, uk, for tk = 0.0
of the solution path shown in Figure (3). (b)

The admissible controls, uk, for tk = 5.8
of the solution path shown in Figure (3).

Figure 4

To understand the solution behavior displayed in Figure (3), one may observe that maximization of expected KL di-
vergence encourages the maximization of the determinate of the innovation covariance. With a constant observation
covariance, this implies increasing the determinate of∇hC(∇h)T evaluated at the prior. As the determinant can be writ-
ten as a product of the eigenvalues of this linear mapping, it indicates that a control solution maximizing KL divergence
will most likely result in a large divergence of the ensemble. A solution that tends towards the strongest vortex, as shown
in Figure (3) now makes based on our previous comments regarding the singular vector field near a vortex.
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The evaluation of the control solutions at different instances of time also warrant attention. The control solution evaluation
at tk = 0.0 shown in Figure (4a), makes clear the fact that without large enough control authority, or virtual simulation
of more than one observation step, the optimization of a given cost functional may not be meaningful; it will be strongly
dependent on initial conditions. For instance, the control solutions that are strongest in Figure (4a) lie on the γ = 0.4
circle. A clear preference for a control tending towards the second vortex becomes much less clear if one were to restrict
γ < 0.4 (i.e. not searching this control space). Lastly, the control target after some time becomes mostly uni-direction, as
shown in the Figure (4b). This is a good indication that the tracer has found its way to a ’basin’ (if one were minimizing)
associated with the cost function.
It would appear from our numerical results that maximization of the expectation of KL divergence is simply too greedy for
the nonlinear, potentially singular, dynamics of the problem consider here. Based on the solution of the regulator control
example previously explored, one might heuristically consider a cost functional that minimizes the prior error covariance,
since control solutions should avoid driving the tracer towards regions with strong vector fields - like those near the
vortices. An example of one realization is shown in Figure (5a). The result here should be compared with Figure (1b).
The behavior of the solution path is initial desirable, as it appears to retard the natural motion to drift away from the virtual
path describing the mean of the vortices. But it should be mentioned that just minimizing the prior error covariance is
also not ideal for the given problem, as solution paths that tend far from the vortices also have favorable objective values.
Therefore, the control solutions are sometimes encouraged to push the tracers away from valuable information for too
long.
Our last numerical investigation is shown in Figure (5b) and shows a typical path solution that results for minimizing
Equation (0.10) with αk = 0.75 ∀k, chosen to encourage the tracer to not over-emphasis the stronger vortex in information
collection. As mentioned earlier, αk could be selected at each time k. Here we consider the case of fixed α for numerical
simplicity. The behavior of the solution path would appear to be more favorable than simply maximizing the expectation
of the KL divergence, but in practice, estimation error tends to be similar.

(a)
Solution path associated with minimizing Equa-
tion (0.9) for T = 30.

(b)
Solution path associated with minimizing Equa-
tion (0.10) for T = 10 and α = 0.75.

Figure 5: Trajectory paths: vortex signals X0, X1, vortex estimates X2, X3, tracer signal X4, tracer estimate X5, and
vortex signal mean X6. The vortex with Γ1 = 1 has initial state (-1, 0). The second vortex with Γ2 = 2 has initial state
(0, 1).

Conclusions

In this paper, we have constructed a framework for using information theoretic cost functionals to perform dynamic data-
driven adaptive observations in a nonlinear stochastic environment. Our application and approach have been novel with
regard to the type of problem consider here; it is not of the typical sensor selection variety. The cost functionals that
were suggested and numerical explored have led to better insight into the behavior of solution paths and appropriate
modifications that should be further investigated. The results of maximizing information theoretic quantities do show
some favorable behavior, but it is obvious that a naive approach to complex and sensitive problems as consider here can
result in poorer performance if not appropriate applied.
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