
 

ENOC 2017, June 25 – 30, 2017, Budapest, Hungary 
 

 

 On the problem of control resonance oscillations of a mechanical system with unbalanced 

exciters 

 

 Sergey Eremeykin
*
, Grigory Panovko

*,**
 and Alexander Shokhin

* 

*
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia

 **
Bauman Moscow State Technical University, Moscow, Russia 

  
Summary. Automatic control system for resonant tuning of a mechanical system with two unbalanced exciters driven by AC motors is 

discussed in the paper. Proposed control system is based on measurements of phase shift between oscillations of the mechanical 

system and exciting force unlike other control systems based on amplitudes measurements. Efficiency and high performance of 

described control system is provided by the usage of so-called “dynamic portrait”, which is a relation between supply frequency of 

the motors, phase shift and eigenfrequency of the system. Theoretical study is complemented by experimental results. Experimental 

results proved the efficiency of the algorithm. Advantages and limitations of the proposed algorithm are discussed. 

 
Introduction 

 

Modern vibrating machines (such as vibrating screens) typically operate on above-resonant modes. But it was shown 

that energy is used in the most efficient way on resonant mode [1]. Thus, resonance tuning can increase performance of 

vibrating machines and decrease power consumption while improving design and operational qualities of a machine. 

Practical application of resonant vibrating machines is associated with the problem of resonance mode instability 

because of nonideal energy source driving vibroexciter and interaction between vibration exciter and oscillatory system. 

Moreover in real machines operation load is not constant. Changes in operation load could easily break resonant tuning. 

One possible way to design efficient resonant vibrating machine is to use a control system for continuous resonant 

tuning.  

The most common design scheme of a vibrating technological machine consists of a solid working body set on elastic 
supports. Oscillations of working body are usually excited by unbalanced vibratos driven by electric motors. There are 

some researches devoted to control system for machines with DC electric motors. However the issue of stabilizing 

resonant vibrating machines with unbalanced exciters driven by AC motors (most commonly used) is studied 

insufficiently so far. Our recent papers were devoted to controls system synthesis for 1DOF system with one exciter [2].  

However, real machines have several degrees of freedom and can move in many directions. Moreover, unidirectional 

exciting forces are usually produced by several synchronously rotating debalances. But interaction of the machine’s 

oscillatory system with exciters could break synchronization that leads to rotating of exciting force in the plane. In this 

paper we describe control system for typical vibrating machine with three main degrees of freedom and two unbalanced 
exciters taking into account interaction of the machine oscillations with exciters. 

 

Design scheme of the machine 
 

In this paper we consider a prototype of vibrating technological machine and corresponding mathematical model which 

can help us to describe main problems of resonant machine control. Design scheme of a typical vibrating machine with 

working body having 3 DOF in y0x plane and equipped with two debalance exciters is shown in Fig. 1. Working body 

(also referred as platform further) could be considered as a rigid body on viscoelastic support with linear elastic and 

damping characteristics. Two unbalanced rotors (exciters) are arranged symmetrically about the axis passing through 

the center of mass of the machine. Rotors’ axes are parallel to each other and perpendicular to the plane y0x (Fig. 1). 

Cartesian coordinate system yOx is used to describe motion of the machine. Origin of the coordinate system is aligned 

with static equilibrium position of the platform’s center of mass. Axis Oy is directed upwards. 

Unbalanced exciters are driven by identical AC motors (most common practical case). The motors are connected to 
three-phase AC mains via a single frequency converter so that its rotors rotate in opposite directions. 

Rotors are driven by torques M1, M2. Thus, the system oscillates in the plane XY. 

 
Fig. 1. Design scheme of a vibrating machine 
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Mathematical model 
 

Motion of the system is described by five generalized coordinates: the linear displacements of the platform’s center of 

mass in the Ox and Oy directions, rotation angle φ of the platform and rotors’ rotation angles φ1 and φ2. All angular 

coordinates mentioned here are measured from the Ox axis counterclockwise. Differential equations of motion for the 

system have been derived using Lagrange equations of the second kind [3]: 
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(1) 

 

Here: mr1, mr2 – unbalanced masses of rotors, r1, r2 – eccentricities of unbalanced masses, 1 2,r rJ J  - moments of inertia 

for unbalanced rotors; 0 1 2r rm m m m    - full mass of the system; 0m  - mass of the platform; , ,x yk k k  - damping 

coefficients of supports in a horizontal, vertical and angular directions respectively; , ,x yc c c  - stiffness coefficients 

of the supports in horizontal, vertical, and angular directions respectively; ρ1, ρ2 - distance from the platform’s center of 

mass to the axes of rotors respectively; 1 2 1,      - angles between the x axis and the axis, which pass through 

platform’s center of mass  and axis of rotors in plane y0x (counted counterclockwise), and 
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, where h is distance between the axis of rotor and axis Ox; 2 2a l  is distance between springs, 

0b   (see Fig. 1); 2 2

0 1 1 2 2ρ ρr rJ J m m    - moment of inertia of the system; 0J  - moment of inertia of the platform; g  

- gravitational acceleration; 1 21, 1      - constants that define the direction of rotors’ rotation; CM  - resistance 

moment for the rotors. 

Torques M1, M2 in right parts of Eq. (1) could be described by static characteristic of motors. These characteristics are 

obtained using simplified Kloss formula: 
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where 1 2,cr crM M  - critical (maximum) torques for each motor, 1 2,cr crs s  - slip at critical torque, 

1 1 2 21 , 1s P f s P f      - current slip determined by frequency f  and angular velocity of rotors 1 2,  , 

2P   is number of poles pairs. 

Thus, equations (1)-(2) describe the system and allow us to simulate dynamics of the system taking into account 
interaction of the machine oscillations with exciters. Certain solutions of these equations will be used in control system. 

 

Control system synthesis 
 

Although the system has 3DOF and 3 resonant modes respectively, we consider control system to tune machine to near-

resonant mode of vertical oscillations only as the most practically important case. The main problem is that in real 

machines there are fluctuations of the full mass of the system due to changes in operation loads. But it is difficult to 

measure these changes directly. So the purpose is to develop algorithm that allows to control the system without direct 

measurement of full mass of the system or operation load. 

Usually it is proposed to establish resonance mode by measuring oscillation amplitude. However, in this case we need 

to know all parameters of the system in advance that contradicts to considered problem statement. Here we propose 

control algorithm based on phase shift measurement. 

More specifically, developed control algorithm is based on the fact that phase shift   between platform oscillation 

law y(t) and driving force acting on the platform F(t) depends on current mode. This phase shift   equals to 2  in 
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resonant mode [4]. So the key idea of the algorithm is to tune controlled parameter to reach phase shift 2   . The 

most convenient way to control AC motors is to use frequency converter. So it is naturally to use power supply 

frequency as controlled parameter. To compute current phase shift we have to collect data that describes system 

dynamics. It is proposed to compute phase shift from experimental data: platform displacement and rotors’ angular 

positions. Platform displacement could be tracked by accelerometers attached to the platform. Rotors’ angular positions 
could be measured by rotatory encoders. For any moment ti, when the platform is in the static equilibrium position, 

phase shift is determined by the formula 
* 2 ,i n      here  *

1 2 2     is angle of total driving force 

direction, n is number of full revolutions in 
* . It should be mentioned that this measurement method is applicable for 

steady state modes only. Steady state should be established by phase shift variance analysis: system is considered to be 

in steady mode if phase shift variance does not exceed some predefined threshold value (1° for instance). 

So the basic idea of the control algorithm is to increase power supply frequency if measured current phase shift is below 

2  and decrease it otherwise. To determine necessary change in supply frequency in this paper we propose to use pre-

computed characteristic of the system which we call "dynamic portrait". 

Essentially dynamic portrait is the relationship of phase shift Δε with the control parameter (supply frequency 

fn=ωn/(2π)) and the natural frequency of vertical oscillations Ω. It can be represented graphically as a three-dimensional 

surface (see Fig. 2). Shape of the surface depends on parameters of the machine. Dynamic portrait for a particular 

machine supposed to be computed from solutions of equations (1)-(2) by slow increase in supply frequency on a set of 

different values of system mass.  

Dynamic portrait gives the new value of supply frequency that corresponds to resonant mode for any current state of the 

machine. Thus control algorithm will use dynamic portrait in the following way. First of all it is necessary to define 

current state of the machine. Current power supply frequency is known at any moment because it is controlled 

parameter. Current phase shift could be computed as it was described above. These two parameters determine a point on 

the surface (point B in Fig. 2) that represents current state of the system. On the other hand this point gives us unknown 

natural frequency (or mass) of the system. This estimation of natural frequency allows us to determine resonant state of 

the system where phase shift 2   . This resonant state is represented by point C on line A (see Fig. 2) that 

represents all possible resonant states ( 2   ). So new resonant frequency could be determined as corresponding 

coordinate of point C. 

 
Fig. 2. Graphical representation of dynamic portrait 

 

Designed control system is based on the feedback principle. The diagram of the control system is shown in Fig. 3. 

  
Fig.3. Scheme of the control system 

 

Supply frequency is controlled via frequency converter 2, which is common for two AC motors. The frequency 

converter is controlled by control unit 1. The control algorithm implemented on control unit computes value of the 
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controlled parameter which is supply frequency f using dynamic portrait and value of phase shift measured using 

rotatory encoders 3, 4 and accelerometers 5. 

 

Experimental research 
 

To prove claimed theoretical statements we designed an experimental setup that corresponds to described scheme of 

machine. The experimental setup has been built in laboratory of Vibrational Mechanics in Mechanical Engineering 

Research Institute of the Russian Academy of Sciences. The setup is shown in Fig.4. It consists of a solid platform set 

on 14 springs. Two AC motors with unbalanced rotors are attached to the platform. The setup is equipped with 

accelerometers and rotatory encoders (aren’t visible in the figure) as in the scheme described above. Control algorithm 

has been implemented on FPGA device (NI cRIO‑9064). Frequency converter (Mitsubishi FR-D720) has been used to 

control motors by control unit. This prototype supposed to be symmetrical to correspond to mathematical model 
described above. 

 

 
 

Fig.4. Experimental setup 
 

All necessary parameters of the experimental setup have been measured (parameters like spring stiffness, dimensions, 

etc.) or estimated indirectly (damping coefficients, etc.). Dynamic portrait of the system has been computed substituting 

all this parameters to equations (1)-(2). Note that taking into account 3DOF and self-synchronization of the exciters 

allows to find ranges of supply frequencies with necessary synchronization of debalances, which form the operating 

range of the control system. In the remaining frequency regions, stable synchronization is either absent or another type 

of synchronization is realized which does not provide the required oscillation form. When the machine is operating in 

these frequency ranges, the control algorithm described above does not allow determining the phase shift, so these 

frequency ranges were excluded from consideration in the experimental study. 

The idea of the experiment is to find out if designed control system could tune the prototype to resonant mode. Results 

of the experiment are shown in Fig. 5 as time diagrams of phase shift Δε and power supply frequency f. 

 

 
Fig.5. Experimental results 
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Initially the prototype starts to accelerate from stationary state. Supply frequency is set to a relatively small value so the 

machine appears to be in below-resonant mode. Then automatic control system switches on. Control system operation is 

based on phase shift measurement, but phase shift could be measured correctly only in stable mode as it was mentioned 

above. Obviously oscillation mode is not stable during acceleration. So control system waits for stable oscillation mode. 

Incorrect phase shift measurements are shown in Fig. 5 as solid black area. After the transition process is finished 
control system starts to tune power supply frequency. Theoretically only one step of frequency change is needed. In the 

experiment there were 13 steps as it could be seen in the figure. It can be explained by several reasons. The most 

important reasons are errors in experimental measurements of phase shift and system parameters. Also it’s necessary to 

note that errors in estimation of damping coefficients significantly impact on dynamic portrait. Nevertheless control 

system tuned the prototype to resonant mode successfully in less than 15 seconds. In Fig. 5 Δε=90° corresponds to 

resonant mode. 

 

Conclusions 
 

Experimental results obtained on controlled vibrating machine prototype proved that the developed control system is 

able to tune a vibrating machine to vertical oscillation resonance.  Operating range of the control system is limited by 

frequencies at which both stable oscillations and necessary synchronization of exciters are realized, and is mainly 

determined by conditions of self-synchronization of the exciters. All parameters must be measured accurately to take 

full advantage of the dynamic portrait. 

The study was performed account for a grant of the Russian Science Foundation (project №15-19-30026). 
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