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Summary. Dynamic bifurcations commonly appear in multi-degree-of-freedom nonlinear systems with slow-fast dynamics. A multi-
ple scale viewpoint of fast dynamics with a slowly varying bifurcation parameter leads to a non-autonomous reduced system. Given few
techniques for non-autonomous systems, particularly for systems with delayed feedback, we develop new asymptotic approaches in the
context of two applications with delayed feedback. The approaches illuminate stochastic effects and inform insightful computations.

Dynamic bifurcations Dynamic bifurcations (DBs) refer to nonlinear transitions that occur when a bifurcation or con-
trol parameter varies. In contrast to a static bifurcation where a change in qualitative behavior corresponds to a fixed
parameter value, the dynamic transition occurs as the parameter traverses a range. Often the transition is shifted relative
to static values, earning the name delayed bifurcation (not to be confused with delayed feedback). In contexts without
delayed feedback [1], it is convenient to view a dynamic bifurcation with multiple time scales, where the bifurcation
parameter varies slowly relative to the rest of the fast dynamics. DBs in systems without delayed feedback have been
studied analytically using asymptotic analysis and geometric singular perturbation theory, and for stochastic settings with
both path-dependent analyses and time-dependent densities. Systems with delayed feedback have special properties, so
we can use some of these concepts but not all.

Machine tool dynamics To fix ideas, we discuss a dynamic Hopf bifurcation in the context of a single degree of freedom
non-dimensionalized model with delayed feedback for the location z of a machine tool with time delay τ and material
parameters in κj ,

ztt + czt + z = κ1(εt) + κ2(εt)[z(t− τ)− z(t)], ε� 1 . (1)

The static case of ε = 0, κj = constant has been studied extensively [2], establishing a critical value for a Hopf bifurcation
at κ2 = κH . For κ2 < κH the constant value steady state is stable, while for κ2 > κH , it is unstable and oscillations
in z grow, exhibiting chatter in the dynamics. This analysis is accomplished by looking at eigenvalues for the system
linearized about the steady state and calculating curves corresponding to vanishing real part of this eigenvalue. The case
of 0 < ε � 1 exhibits a DB, where there is a shift in the value κ2 = κd near which oscillatory behavior grows, i.e.
κd > κH (see Fig. 1 LEFT). To understand this transition, it is not sufficient to look simply at fixed parameter values
where the real part of the eigenvalues are zero, in contrast to the analysis for the constant parameter case.
For systems without delay, the DB mechanism can be related to the integral of the eigenvalue describing growth of the
oscillations, rather than to its instantaneous value. We illustrate this for (1). using a multiple time scale analysis for
oscillations around the quasi-steady state, zslow depending on a slow time scale T = εt, κj(T ), and other parameters.
We consider the time dependent growth (or decay) of perturbations to zslow, z(t, T ) = zslow + εZ(t, T ) with Z satisfying
to leading order (1) with κ1 = 0. Taking Z(t, T ) = e(r(T )+iω(T ))/εZ0 in terms of the slow time T , we get

m[r2
T − ω2

T ] + crT + k = κ2(T )
[
e∆ετr cos(∆ετω)− 1

]
(2)

2mrTωT + cωT = κ2(T )
[
e∆ετr sin(∆ετω)

]
(3)

where ∆ετω = ω(T−ετ)−ω(T )
ε , ∆ετr = r(T−ετ)−r(T )

ε . In general this system captures the transition, but comparing
the static and dynamic parameter cases requires a new approach beyond (2-3). For the static case, one would normally
substitute directly Z = eλt=iωt. For the dynamic case we use Z = eλ(T ), λ(T ) = ρ(T ) + iψ(T ) . Then the growth in the
solution is in terms of

∫
ρT (T )dT , where

2mρT ∼ −(c+ κ2(T )τ(cos(∆ετψ)− 1)) +
√

(c+ κ2(T )τ(cos(∆ετψ)− 1))2 − 4m(k − κ2(T ) [cos(∆ετψ)− 1]−mω2
qs) (4)

with the approximations ∆ετρ(T ) ∼ τ dρ(T )
dT , e∆ετρ ∼ 1 + ∆ετr, and ωqs the quasi-static approximation for the fre-

quency. In contrast, for the static case, ρ ∼ CT with C obtained from (4) with κ2 a constant near κH . While the static and
dynamic cases rely on similar functional forms, the change in sign of ρ for the static case depends on the instantaneous
rate coefficient C in terms of fixed κj . In contrast in (4), ρ is determined through accumulation via integration over T ,
including a range where κ2(T ) < κH . This calculation illustrates the importance of understanding the dynamical multiple
scales behavior of both the real and imaginary parts of exponents, while in the static case the focus is on the imaginary
part and parameters for which C = 0. In Figure 1LEFT , we see κd > κH , κd depends on ε for smaller values of ε, with
increased shift in κd for smaller initial values of κ2(T ) and larger ε as observed in other applications [1].
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Figure 1: LEFT: The dynamic bifurcation value κd vs. ε, capturing the growth of oscillatory dynamics. κH ≈ .106 (dashed line).
Solid and dash-dotted lines: κ2(T ) = κd for which oscillations grow in the deterministic model; dash-dotted corresponds to a smaller
initial value of κ2. ∗ and o indicates κd for noise introduced in κj . RIGHT: Comparison of dynamics of x in (5) with (red dotted) and
without noise (blue solid), in cases with (lower) and without (upper) stochastic sensitivity.

Stochastic sensitivity In addition to the deterministic dynamics for r and ω , we can also consider the stochastic dynam-
ics in the case where there is variability in the material parameters (or other parameters). As illustrated above, it is the
integral of r that contributes to the DB. It is well known that via coherence resonance, oscillations can be sustained for
material parameters κ2 < κH [3], so that for the DB, on average, stochastic contributions to the integral of r accumulate
and reduce the shift in κd. We observe this in Figure 1 LEFT, for parameter values where there is a noticeable shift in κd.
Note that the noise removes the shift in κd for smaller initial values of κ2, except for very slow time scales T .

Implications for other applications: The example above illustrates the importance of understanding time-varying quan-
tities such as amplitude and frequency of perturbations in the dynamic stability in non-autonomous systems. To contrast
with the behavior for machine tool dynamics indicated above, we consider another application, that of an opto-electronic
oscillator. We give a non-dimensionalized equation for x a state variable and y, its integral capturing band pass features
commonly appearing in optical communications [4],

εx′ = −x− y + f(x(s− δ))− f(0), y′ = x, f(x) =
β

1 +m sin2(x+ φ)
ε� 1 . (5)

A physically relevant range of parameters corresponds to ε � δ � 1, allowing a multiple time scales analysis based on
a slow manifold (x0(s), y0(s)) obtained for ε = 0. Studying perturbations u to the slow manifold, i.e. x = x0 + u, x0

is treated as a quasi-steady state relative to a fast time s/ε. We find x0 = xH corresponding to a Hopf bifurcation in u,
so that x0 plays the role of the DB parameter. As u oscillates around the upper branch of slow manifold (see Figure 1
RIGHT) these oscillations lose stability via a Hopf-type DB, shifted relative to xH marked by an arrow in the figure.
The multiple scale analysis of x0 and u leads to an understanding of the stochastic sensitivity of this system. We derive
an expression σ(1 + ε(σ2 + ω2)) = −1 − e−δσ/ε cos(δω/ε)mf(x0) sin(2(x0 + φ)) where σ characterizes the growth
or decay of noisy perturbations near x = 0 = xH , related to oscillations in u with frequency ω. Near xH , σx0

is large.
Then, unlike the machine tool model above, there is not a substantial region |σ| � 1 where a coherence resonance-like
pheomena can change the DB. Rather, even though there is a shift of the DB relative to xH , noisy perturbations can not
sustain oscillations via coherence resonance so the effect of generic noise is relatively minimal, and does not affect the
DB. The upper panel of Figure 1RIGHT shows this, where the deterministic and stochastic dynamics are nearly identical.
However, noise can have a noticeable effect, via perturbations of the larger amplitude of oscillations away from the Hopf
point. There noise can drive crossings of the unstable portion of the solution of (5) for ε = 0, rather than via coherence
resonance as in the machine tool example above.

Conclusions: In two examples of dynamic bifurcation in systems with delayed feedback, reduced non-autonomous sys-
tems are derived via a multiple scales analysis. The stability analyses borrow from standard techniques for systems with
delay, with new sophisticated approaches for transitions exploiting variations in real and imaginary parts of exponents
for fluctuations about quasi-steady states. We identify mechanisms both for shifts in the transitions and for stochastic
sensitivity, opening the door for studying hysteresis between steady states and complex nonlinear delayed dynamics as
well as the robustness of transitions, or tipping, in non-autonomous settings with delayed feedback. Related asymptotics
are useful for large delays τ = O(ε−1), of interest in the Ikeda family of optoelectronic oscillators [5].
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