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Summary. We propose a control scheme which can stabilize and fix the position of chimera states in small networks. Chimeras consist
of coexisting domains of spatially coherent and incoherent dynamics in systems of nonlocally coupled identical oscillators. Chimera
states are generally difficult to observe in small networks due to their short lifetime and erratic drifting of the spatial position of the
incoherent domain. The control scheme, like a tweezer, might be useful in experiments, where usually only small networks can be
realized.

Chimera states are complex spatio-temporal patterns in networks of coupled oscillators, exhibiting a hybrid nature of
spatially coexisting coherent and incoherent domains. In small-size networks, there exist two difficulties preventing the
observation of chimera states. First, it is known that chimera states are usually chaotic transients that eventually collapse
to the uniformly synchronized state [1, 2]. Their mean lifetime decreases rapidly with decreasing system size such that
one hardly observes chimeras for 20 − 30 coupled oscillators. Second, the position of the incoherent domain is not
stationary and moves erratically along the oscillator array [3, 4]. Both effects, finite lifetime and random walk of the
chimera position, are negligible in large-size systems, but they dominate the dynamics of small-size systems, making the
observation of chimera states very difficult.
We propose an efficient feedback control scheme which aims to stabilize chimera states in small networks [5]. Like a
tweezer, which helps to hold tiny objects, our control has two levers: the first one prevents the chimera collapse, whereas
the second one stabilizes its lateral position. Our control strategy is universal and effective for large as well as for small
networks, it effectively works for oscillators exhibiting both phase and amplitude dynamics.
We consider a system of N identical nonlocally coupled Van der Pol oscillators xk ∈ R given by

ẍk = (ε− x2k)ẋk − xk +
1

R

R∑
j=1

[a−(xk−j − xk) + b−(ẋk−j − ẋk)] +
1

R

R∑
j=1

[
a+(xk+j − xk) + b+(ẋk+j − ẋk)

]
.

The scalar parameter ε > 0 determines the internal dynamics of all individual elements. For small ε the oscillation of the
single element is sinusoidal, while for large ε it is a strongly nonlinear relaxation oscillation. Each element is coupled
with R nearest neighbors to the left and to the right. The oscillators are arranged on a ring (periodic boundary conditions)
such that all indices are modulo N . The coupling constants in position and velocity to the left and to the right are denoted
as a−, a+ and b−, b+, respectively. For the sake of simplicity we assume a− = a+ = a, b− = aσ−, b+ = aσ+.
We define two complex order parameters

Z1(t) =
1

[N/2]

[N/2]∑
k=1

eiφk(t), Z2(t) =
1

[N/2]

[N/2]∑
k=1

eiφN−k+1(t),

where φk(t) is the geometric phase of the k-th oscillator computed from eiφk(t) =
(
x2k(t) + ẋ2k(t)

)−1/2
(xk(t) + iẋk(t)) .

Tweezer feedback control is introduced in the form

σ± = Ks

(
1− 1

2
|Z1 + Z2|

)
±Ka(|Z1| − |Z2|),

where Ks and Ka are gain constants for the symmetric and asymmetric parts of the feedback control, respectively.
We demonstrate the effect of the control scheme in small systems of nonlocally coupled Van der Pol oscillators, and
investigate the role of system parameters and control strengths for the most efficient stabilization of chimera states. We
show that tweezer control works successfully for Van der Pol oscillator in the weakly as well as in the strongly nonlinear
regime (large ε), and for networks of nonlocally coupled FitzHugh-Nagumo oscillators [5].
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