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Summary. In this work we formulate a simple model for the description of the dynamical response of a vibrating beam under a
moving mass with unilateral constraint. The effect of the impacts on the linear mode coefficients and on the overall nonlinear dynamics
is illustrated by means of numerical simulations.

The Model

The analysis of the interaction between a cantilever beam and a moving mass, constrained to remain on the beam’s surface,
has been subject of numerous investigations in the literature [1, 2, 3, 4, 5, 6]. In particular, it is interesting to know how
the traveling mass activates different linear modes of the beam, and how, roughly speaking, the mass indirectly couples
these modes. In all previous investigations, the constraint is supposed bilateral, so that the mass is not allowed to leave the
beam. A different situation arises when the moving mass is allowed to leave the beam as the force of contraint reverses its
sign. The ball then freely moves in space under gravity, until it falls again on the beam, bounces back into space and so
on. At this point, several behaviours are possible: the mass may undergo a sequence of bounces up to the end of the beam;
it may bounce back and forth, due to the inflected profile of the beam at the bounce instants; it may enter a chattering
situation [7, 8]. In order to analyze the dynamics described above, we consider a uniform beam of mass M and length L
with clamped-clamped boundary conditions. The vertical profile of the beam w(x, t) is governed by the beam equation;
the mass which interacts with the beam is regarded as a point-mass m and its motion is governed by Newton’s law. The
coupled equations, in dimensionless form, which govern the system formed by the beam and the mass are then given by
[6]
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where x ∈ [0, 1] is the space variable, t ≥ 0 the time, v the horizontal velocity of the mass (initially supposed constant)
and the parameters α2 = E J/(M gL2) and ε = m/M have been introduced. The boundary conditions are w(0) =
w′′(0) = w(1) = w′′(1) = 0. By eliminating the reaction Φ from equation (1), we finally obtain
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δ(x− v t) = −1− ε δ(x− v t). (3)

Eigenfunction expansion

In order to solve Equation (3), we expand the profile function in the eigenfunctions of the free vibrating beam with
the boundary conditions given above. Of course, the presence of the δ−function in equation (3) makes this approach
an approximation; a proper set of eigenfunctions could be, for example, those introduced in [9] and used also in [1].
However, we find that the error introduced by using the free vibrating beam eigenfunctions is small, and we leave the
improvement on this point for future work. Before introducing the eigenfunction expansion, we split the profile function
into a static term and an oscillating term, w(x, t) = wS(x) + w̃(x, t), where the function wS is the solution of the static
equation and is given by wS(x) = −1/(24α2) (x4 − 2x3 + x). We finally obtain the governing equation for w̃:
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The beam eigenfunctions for the clamped-clamped boundary conditions are well known and are given by ϕn(x) =√
2 sin(λnx), with λn = nπ, n = 1, 2, .... By expanding the oscillating part of the profile function, w̃, according to

w̃(x, t) =

∞∑
n=1

cn(t)ϕn(x) (5)

we obtain, after some algebra,
A(t) · c̈ + 2 v εB(t) · ċ + D(t) · c = −ε f(t) (6)

where the matrices A, B, D and the vector f are given by

Amn = δmn + εϕm(v t)ϕn(v t) Bmn = ϕm(v t)ϕ′
n(v t)

Dmn = α2 λ4m δmn − εv2 λ2n ϕm(v t)ϕn(v t) fm =
[
1 + v2w′′

S(v t)
]
ϕm(v t),
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n,m = 1, 2, ..., N . Equations (6) are solved by a Runge-Kutta technique in time, until the force of reaction Φ remains
positive. Figure 1 portrays the behaviour of the force of contraint as function of time, as given by our numerical simulations
with α = 1, ε = 0.01 and v = 0.1, with the beam initially vibrating in the fundamental mode, from t = 0 until it changes
sign. When Φ becomes negative, the moving mass leaves the beam and subsequently undergoes a sequence of bounces
whose outcome depends on the ball’s velocity and on the beam’s profile at the time of the successive impacts.

The impacts

Once the ball leaves the surface of the beam, the beam itself vibrates according to the free beam equation and the ball
undergoes a sequence of impacts until it exits the beam; the coefficients cn(t) which appear in equation (5) for the beam,
are given by

cn(t) = An cosωn(t− tk) +Bn sinωn(t− tk) (7)

where ωm = αλ2n and An and Bn are determined by the values of cn(t) and ċn(t) immediately after the previous impact.
Then, we need to find the relationship between the velocities of the ball before and after the bounce and the relationship
between the expansion coefficients of the beam before and after each impact. By assuming that the tangential (with
respect to the beam profile) component of the ball’s velocity is conserved, while the normal component reverses its sign
and attenuates its modulus by a restitution coefficient r < 1 we find that the coefficients cn(t) and ċn(t) are given by

cm(0+) = cm(0−) (8)

ċm(0+) = ċm(0−) +
κm
ωm

(9)

where κm = ε (1 + r) v⊥ ϕm(xk), with v⊥ the perpendicular velocity of the mass at the impact. Here cm(0+) and
ċm(0+) denote the coefficients and their derivatives after the impact, while cm(0−) and ċm(0−) denote their values
before the impact. Equations (8) and (9) provide the initial values of the expansion coefficients for the free vibrations of
the beam between each impact and the next one. The calculation of the ball’s velocities after each impact is rather standard
and we do not report it here. Figure 2 shows the result of the numerical simulation for the second vibration mode of the
beam; the figure clearly displays the initial trait, where the ball is attached to the beam, and the effect of all subsequent
impacts of the mass with the beam, resulting in the time derivatives of the coefficients being discontinuous.
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