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Summary. The goal of this work is to develop a fast and accurate method for determining the Young's modulus of 2D materials 
exploiting their non-linear dynamics response. To demonstrate the method, we perform a series of measurements on strongly driven 
circular graphene membranes, showing the transition from linear to non-linear behavior. The non-linear response is approximated by a 
single Duffing oscillator, and harmonic balance method together with a least squares technique is used to identify non-linear parameters 
following an iterative approach. From the identified non-linear stiffness parameter and a geometrically non-linear model of the 
membrane, the Young's modulus is determined. Close agreement is observed between the Young’s modulus obtained exploiting non-
linear dynamics response and those obtained by AFM nanoindentation. 
 

Introduction 
   Since graphene was first isolated, a plethora of two-dimensional (2D) materials have been discovered. The 
remarkable mechanical properties of pristine 2D nanomaterials have sparked interest for potential uses such as 
pressure, gas and mass sensors, representing the ultimate limits of 2D Nano-Electro-Mechanical Systems (NEMS) [1, 
2]. Although promising, the development of 2D NEMS devices is still far from being considered well-established, 
predominantly due to the large variability that can be seen in mechanical properties obtained by available techniques 
[3].The conventional method for determining mechanical properties of suspended 2D materials is Atomic Force 
Microscopy (AFM) [4]. AFM operation requires mechanical contact between a sharp tip and the membrane that 
potentially leads to large stress and adhesion effects near the tip causing possible membrane fracture. Moreover, to 
get accurate measurements, large deflections are used, which can cause slippage, flattening of imperfections, and thus 
modifying the tension and Young's modulus of the 2D material. For studying the intrinsic mechanical properties of 
these materials, it is essential to characterize them at the smallest possible forces and strains, while still maintaining 
sufficient accuracy in determining the mechanical properties [3]. Therefore, this study focuses on developing a 
reliable non-contact method for characterizing the mechanical properties of 2D nanomaterials by utilizing their non-
linear dynamics response. 
 

Experimental procedure 
   Circular cavities are fabricated by etching holes in a gold-palladium (100 nm) and SiO2 (285 nm) layer on a silicon 
wafer, resulting in cavities with a depth of 385 nm and a diameter of 5m. In order to create circular nanodrums, a 
few-layer graphene flake is then transferred on top of the cavities using an all-dry transfer technique [5]. The sample 
is then mounted in a vacuum chamber to minimize damping by the surrounding gas. The flexural motion of the 
nanodrum is detected using an optical interferometer, which has been used previously in frequency and time-domain 
studies of nanomechanical properties of 2D materials [6]. All measurements are conducted at the center of the drum. 
The drum’s motion is probed by a Helium−Neon laser, and the intensity variations caused by the interfering 
reflections from the moving membrane and the fixed silicon substrate underneath are detected by a photodiode. The 
detection is done in a homodyne scheme, using a Vector Network Analyzer (VNA). Fig. 1(a) shows a simplified 
schematic setup. The drum is actuated by subjecting it to both dc and ac voltages while the excitation frequency is 
varied around the fundamental frequency in small steps. To relate the measured amplitude (in V/V) to the actual 
motion of the membrane, a calibration measurement of the drum's Brownian motion is performed [6].  
 

Non-linear identification 
   In order to perform the identification procedure, first the geometrically non-linear response of the fixed graphene 
membrane is modelled by using a Lagrangian approach. The numerical analysis is performed by assuming 
axisymmetric vibrations and expanding the radial displacement of the membrane in terms of admissible functions 
satisfying fixed boundary conditions. Then, by neglecting radial inertia, Lagrange equations are reduced to a single 
dimensionless Duffing oscillator with viscous damping as follows: 
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where x is the generalized coordinate associated with the fundamental mode of the membrane. Moreover, x and t are 
made dimensionless with respect to the drum’s thickness (h) and the excitation frequency, respectively. In addition, r 
is the frequency ratio (the ratio between the excitation frequency and the fundamental frequency ()), is the modal 
participation factor, F is the driving force, and m is the mass of the membrane. The unknown parameters are the 
damping ratio, the dimensionless force, and . The non-linear stiffness is function of the Young's modulus 
and its convergence and accuracy is determined by using different number of terms in the expansion for the radial 
displacement of the membrane. For a graphene membrane with Poisson ratio 0.16,  converges to: 
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where R is the radius of the drum, E is the Young’s modulus, is the mass density, and N0 is the pretension that is 
determined from the experimentally measured fundamental frequency. Next, harmonic balance method is applied and 
the solution of equation (1) is approximated by a truncated Fourier series: 
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where N is the chosen order of truncation and xN is the truncated Fourier series representation of x. By substituting 
equation (3) into (1) and equating the coefficients of each of the N harmonics, a system of algebraic equations is 
obtained that relates the frequency ratio r to the amplitudes xN. Next, the identification is conducted by assuming that 
the vibration amplitude xN, and the frequency ratio r are already known for every frequency step from experiments. 
Therefore, in order to obtain the unknown parameters, the following system is solved for every j-th frequency step, 
r(j) : 
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where m is the number of excitation frequency steps for which the experimental data was obtained at a specific 
excitation level. Sx, and Qx are vectors comprising truncated Fourier coefficients of x, and x3, respectively, and Sf is 
the dimensionless force vector. System (4) is over-constrained, since it contains (2N+1)×m equations. Therefore, in 
order to obtain unknown parameters the least squares technique has been applied [7]. 
 

Results 
   The nanodrum of interest has a thickness of 5nm as confirmed by Raman spectroscopy and atomic force 
microscopy. The membrane is driven electrostatically using the silicon wafer as a backgate. Fig. 1(b) shows a set of 
calibrated frequency response traces of the fundamental mode while varying the driving ac voltage. The dc voltage 
has been kept fixed (Vdc = 3V) throughout the entire measurement. The frequency of the fundamental mode is 
14.7MHz. The RMS force is the electrostatic driving force corrected by the modal participation factor of the drum’s 
fundamental mode. For driving forces above FRMS = 15pN, the resonance peak exhibits a non-linear hardening 
behaviour, which holds information about the Young’s modulus. These set of curves are then fitted by equation (1) 
and the cubic non-linear term is obtained to extract the Young’s modulus. Figs. 1(c) and (d) compare identified curves 
and experimental ones for different FRMS. The fitted curves are in full agreement with the experimental results, giving 
a Young’s modulus of 0.6 TPa. 

 

 

 

Fig. 1. (a) The schematic experimental set up; (b) experimentally measured non-linear amplitude-frequency response 
curves; (c) comparison between the experimental (dots) and identified curve (red line) for F=26pN; (d) comparison 
between the experimental (dots) and identified curve (red line) for F=46pN.  
 

Conclusions 
   A non-contact measurement procedure has been developed to obtain non-linear frequency response curves of strongly 
driven graphene nanodrums. In order to estimate Young’s modulus, a non-linear identification technique based on 
harmonic balance method was presented and the experimentally obtained frequency-amplitude curves were fitted by a 
forced Duffing oscillator. The identified value of Young’s modulus is within the range of elastic modulus previously 
reported in the literature via AFM nanoindentation. The new method allows high frequency determination of the Young's 
modulus at small amplitudes without mechanical contact. 
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