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Summary. This paper addresses the inverse–dynamics/setpoint–tracking problem related to the load response of combustion-thermal
power plants. Given the (discrete time) mathematical model of the plant, an approach is proposed which (if admissible) achieves the
tracking of generator power and steam pressure setpoints by the control of boiler load and turbine valve which are considered as process
inputs. The proposed approach bounds the one–step–ahead predicted state of the nonlinear plant model by a compact polyhedral set
whose vertices are defined by Linear Time Invariant (LTI) systems. Using this, a robust–tube Model Predictive Control approach is
introduced to derive the solution to the tracking problem. An application of the proposed approach is presented for a Circulating
Fluidized Bed (CFB) plant.

Introduction

Current trends indicate that wind and solar energy will have a significant share in the energy production portfolio in the
future. A comprehensive summary of trends and targets is provided in [4]. The widespread of renewable power of this
kind reconfigures the role of conventional power production as it simultaneously triggers tightening emission and safety
regulations and demanding performance requirements for combustion–thermal power plants [7, 5, 1]. Among others, these
requirements involve: a) capability to change load level frequently in a fast manner within as wide range of load levels as
possible, b) increased operational range by decreasing the minimum achievable load level without boiler or turbine trip,
(i.e. operating for long times at partial load levels, which makes for a suboptimal operation) and c) satisfying emissions
limitations both at steady-state operation and during the transient response.
To be able to satisfy these, it is essential to improve the dynamic response of power plants requiring flexible operation
from (a) the firing system, (b) the water–steam system, (c) the turbine system as well as (d) the emission removal system.
On the other hand, improving the dynamic response of power plants is a challenging task originating from the fact that
plants are originally designed for constant load level operation according to the governing design paradigms and practice
[8, 9]. The most cost–efficient way to improve the operation flexibility is to redesign the unit master control. Existing
plants may inherently have great potential for flexibility which is currently not utilized by the controller. For example,
large stored energy of a drum type boiler or the storage capacity of the superheater system can be further exploited. The
balance of plant system may actively participate in controlling the generated power either applying condensate throttling
technique or acting as an energy buffer.
Although the design of the process (thermal inertia, storage capacities, etc.) determines the load change capabilities, the
calculation of the extremes for the plant of interest (maximum and minimum load rate of change) is of high importance.
First, it helps to define the target for control design (maximum achievable ramp set point). Secondly, it provides a feedback
for process design, thus may be utilized for the simultaneous design of process and control.
In the field of control design of linear uncertain systems recently robust tube–based model predictive approaches have
been gaining much interest [11, 10, 6, 3]. The reported benefits (e.g., computational tractability, robustness, relative
simple implementability etc.) makes the tube-based problem formulation to be an attractive alternative for nonlinear
systems arising in power plant control design and applications. This paper addresses the control problem related to the
fast load change(s) of combustion–thermal power plants. Utilizing receding horizon control, a tube–based MPC approach
is developed solving the following problem: given a dynamic power plant process model and a desired process output
trajectory, what is the corresponding input trajectory (if any) subject to (safety, system and input) constraints.
The paper is organized as follows. Section Control aspects of combustion–thermal power plants gives a brief overview
about the process of interest and related control applications. Using this, Section Problem formulation formulates the
problem and control objectives. In Section Approach a robust tube–based MPC approach is detailed, while in Section
entitled Application the performance of the proposed approach is demonstrated using a transfer function based mathe-
matical model of a Circulating Fluidized Bed (CFB) power plant. Finally, Section Summary and Conclusions provides a
summary of the work and draws the conclusions.

Notation
The set of non-negative real numbers is denoted by R+. The set of non-negative and positive integers are denoted by Z0

and Z+. Likewise, for any K ∈ Z0, Z0
K := {0, 1, . . . ,K} and for any K ∈ Z+, Z+

K := {1, . . . ,K}. The vector e ∈ Rn

denotes the vector of ones i.e. e := (1, 1, . . . , 1)′ where the symbol ′ denotes the vector transposition operator. Given
a vector x ∈ Rn, |x| denotes its Euclidean norm. A polyhedron is the (convex) intersection of a finite number of open
and/or closed half-spaces and a polytope is a closed and bounded polyhedron. The symbol ⊕ denotes the Minkowski set
addition where given two sets X ,Y ⊂ Rn, X ⊕ Y := {x + y | x ∈ X , y ∈ Y}. The symbol 	 denotes the Pontryagin
set difference where X 	 Y := {z | z ⊕ Y ⊆ X}.
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Control aspects of combustion–thermal power plants

Thermal power plants implement the Rankine cycle which is utilized to produce electric power from heat. Considering
water as work fluid, the cycle begins with the water pump which maintains the required pressure and flow conditions in
the system. After pressurization, the water is directed towards the steam generation unit where it interacts with external
heat and high pressure high temperature steam is produced. The steam passes through the turbine which drives the electric
generator. After the turbine, the steam is condensed and the water leaving the condenser enters the pumping unit closing
the cycle. The heat required to empower the cycle is produced in the furnace by combusting a given fuel. Figure 1 depicts
the main building blocks of the process.
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Figure 1: Process of interest (schematic).

The main objective of a power plant is to provide regulating power according to the actual balance between power supply
and demand. From the perspective of control, the regulating power appears as a time varying setpoint for the generator
power and steam pressure of the plant which are considered as (main) process outputs. Correspondingly, the the main
process inputs are the load of the boiler which is proportional to the heat release and the opening degree of the valve
located at the inlet of the turbine (referred to as turbine valve).
In practice, the provision of regulating power involves rapid load changes and it is achieved by the control of the two
main process inputs. Regarding the control, industrial solutions favor one of the following strategies: (1) Boiler follow,
(2) Turbine follow and (3) Coordinated control. The key idea for the first two (1 and 2) is to couple the setpoints with
process inputs and achieve the tracking of a particular setpoint with the manipulation of the corresponding input. With
that said, in boiler follow mode, the furnace is disconnected from the power generation control, its load level is adjusted
to ensure the tracking of the pressure setpoint while with the manipulation of the turbine valve the steam turbine is able to
utilize the stored energy in the system to provide immediate response to the power demand. In contrast, the turbine follow
control strategy interchanges the coupling as the furnace fires to satisfy the power demand and turbine valve maintains the
pressure. Unlike the former control strategies, coordinated control do not use coupling it aims to manipulate the system
inputs in synergy. In general, it includes various logic schemes to open/close the steam turbine valves for quick load
response as well as fire the furnace for the anticipated energy requirements while tracking the steam pressure setpoint.
The demanding performance requirements magnify the need for coordinated control for combustion–thermal power
plants. In practice, the design of coordinated control requires expertise as the control law is usually derived by means of
mass/energy balances which highly rely on process specific knowledge.
One of the main objectives of this paper is to approach the design of coordinated control in purely mathematical manner
assuming that the mathematical model of the process which maps the boiler load u1(t) and the opening degree of the
turbine valve u2(t) to the generator power y1(t) and operating pressure y2(t) is known but the process knowledge (physical
interpretation of the mathematical model) is not available. Results of this approach are of high interest for comparison
with the process knowledge based methods.

Problem formulation

Process model
The dynamic behavior of the system of interest can be approximated by lumped models i.e. ordinary differential equa-
tion(s). However, since the control is usually piecewise constant (i.e., digital control is applied) the system is modeled in
discrete time by the recursive formula
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xk+1 = f(xk, uk), k = 0, 1, . . . (1a)
yk = Cxk + yc (1b)

where xk ∈ Rn is the system’s state, uk ∈ R2 is the vector of manipulated inputs and yk ∈ R2 is the system output
vector at time k∆twhere ∆t > 0 is the time discretization unit. The vector yc represents a constant threshold. The system
variables x and u are subject to hard (state and input) constraints

xk ∈ Xk and uk ∈ U , ∀k ∈ Z0 (2)

which are characterized by nonempty polytopes Xk = {x ∈ Rn | Akx ≤ bk} and U = {u ∈ R2 | Auu ≤ bu}. The
defined sets Xk and U represent the operational constraints of the power plant of interest.

Modeling remarks
Power plants are complex, distributed physical systems. Relying on (modeling) assumptions which provide an approxi-
mation of the underlying physical phenomena, the lumped model of interest (ODE representation) is usually derived (a)
by discretizing the elements of the plant in the spatial dimension and applying conservation laws (mass, momentum and
energy) for the discrete elements or (b) simple transfer function description of the process components are used to form
the complete model of the plant. The resulted model accounts for the significant transport delay with respect to the process
input(s). Regarding this, the state variable of model (1) is a compound as the transport delay is augmented to the state
applying zero order hold (ZOH) on the inputs subject to time discretization. Correspondingly, unlike the dimension of
the system inputs and outputs the dimension of the state n is not specified in the problem setting phase, it depends on the
chosen modeling approach and its settings.

Inverse–dynamics/setpoint–tracking problem
This paper addresses the problem of load response of power plants. From engineering perspective this can be associated
with the problem of (1) qualifying how well power plant process outputs follow pre-defined time varying signals (set-
points) and (2) how to make the process outputs follow pre-defined time varying signals. To capture the essence of load
response problem we consider inverse–dynamics and setpoint–tracking problem classes.

Definition 1 (Inverse–dynamics problem). Given a finite lookahead horizon K ∈ Z+ and a reference trajectory {r1, r2,
. . . , rK} find an input trajectory {u0, u1, . . . , uK−1} such that max{|y1 − r1|, |y2 − r2|, . . . , |yK − rK |} = 0 subject to
(1) and (2).

Correspondingly,

Definition 2 (Setpoint–tracking problem). Given a finite lookahead horizon K ∈ Z+ and a reference trajectory {r1, r2,
. . . , rK} find an input trajectory {u0, u1, . . . , uK−1} so that ∃k ∈ Z0

K and finite δ, ε ∈ R+ for which max{|y0−r0|, |y1−
r1|, . . . , |yk−1 − rk−1|} ≤ δ and max{|yk − rk|, |yk+1 − rk+1|, . . . , |yK − rK |} ≤ ε subject to (1) and (2) where ε is a
sufficiently small tolerance (in engineering sense).

The relation between the two problem classes are clearly highlighted by their definitions, as setpoint–tracking can be
considered as a relaxation of the inverse–dynamics problem. The main objective of this paper is to provide an approach
which renders a solution to the inverse dynamics problem. However, this problem class cover only a small portion of real
life situations which makes the relaxation (and the derivation of a solution approach for the relaxed problem) necessary.

Approach

Given the process model and the initial state x0, the future evolution of the system for a given control sequence {u0, u1,
. . . , uK−1} can be determined simply by applying the recursive formula (1). The related inverse problem however
involves numerous challenges originating form the fact that, for nonlinear high dimensional systems the correspond-
ing mathematical problem usually results in non-convex optimization which turns out to be computationally challeng-
ing/intractable. To resolve this issue, in this section a solution approach for the inverse problem is proposed relying on
the concepts and methods of the field of robust Model Predictive Control (MPC). The approach relies on perfect state
information, thus we begin with the formulation of the following assumption:

Assumption 1. The state is measured, thus xk is known at every time instant k ∈ Z0

Let X̂k denote the set of states which must be reached at time k where

X̂k := {x ∈ Xk | Cx = rk − yc}, ∀k ∈ Z0
K (3)

and rk is the reference signal (setpoint) which must be tracked by the output yk. Formula (3) is the mathematical equivalent
to the constraint yk = rk where X̂k is going to be referred to as target set thoughout this paper. Since Xk are polytopic
definition (3) implies that X̂k are polytopic sets as well for all k ∈ Z0

K .
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The introduction of the target sets makes possible to assign a geometrical meaning to the inverse/tracking problem. As the
target sets are compact, the solution require the state trajectory {x0, . . . , xK} to be within a ”tube” referred to as target
tube defined by a sequence of sets of states {X̂0, . . . , X̂K}. Using this, the equivalent mathematical problem is a target
tube reachability/constraint satisfaction problem of the form: given x0 ∈ X̂0 and a finite lookahead horizon K ∈ Z+,

find
{
uk | uk ∈ U , xk+1 = f(xk, uk), xk+1 ∈ X̂k+1, ∀k ∈ Z0

K−1

}
(4)

In the sequel a solution to (4) is considered as the solution to the inverse/tracking problem. As already pointed out,
the derivation of the solution to a problem of this form might be prohibitively difficult (especially when no knowledge
about the underlying physical phenomena is utilized). To make the corresponding mathematical problem computationally
tractable the following assumption is introduced:

Assumption 2. There exists a finite N ∈ Z+ \ {1} and controllable pairs [Aj Bj ], Aj ∈ Rn×n and Bj ∈ Rn×2 such
that f(xk, uk) ∈ Ω(xk, uk) for all (xk, uk, k) ∈ (Xk × U × Z0) where Ω(xk, uk) := Conv{Ajxk + Bjuk, j ∈ Z+

N},
Conv{. . . } denotes convex hull and Ajxk +Bjuk are the vertices of the convex hull.

Assumption 2 implies that f(xk, uk) can be expressed as the convex combination of the vertices of Ω(xk, uk), that is,
there exist multipliers λj(xk, uk) ∈ R such that

f(xk, uk) =

N∑
j=1

(
Ajxk +Bjuk

)
λj ,

N∑
j=1

λj = 1 and 0 ≤ λj ≤ 1, ∀j ∈ Z+
N . (5)

The key idea of this formulation is to bound the one step ahead prediction of the nonlinear mathematical model (spread
of the state trajectory) by a nonempty polytopic set Ω(xk, uk) whose vertices are formed by Linear Time Invariant (LTI)
systems. The advantage given by the use of LTI systems is that these are solvable analytically. This properly is exploited
by the approach which utilizes the predicted trajectory of the bounding LTI systems to solve (4).
Mathematically, one of the main concerns with the target tube reachability problem (4) is that, the existence of target tube
do not provide any information about the existence of solution(s). However, if the target tube exists problem solvability
can be approached by the calculation of the robust control invariant tube which usually poses a stricter constraint system
by introducing a ”tube within the target tube” [2]. The robust control invariant tube is calculated using the bounding LTI
systems.

Definition 3. A sequence of sets of states (tube) {X̄0, . . . , X̄K} is robust control invariant for the system xk+1 = f(xk, uk)
and constraints X̂k, U if and only if X̄k ⊆ X̂k and ∀xk ∈ X̄k ∃uk ∈ U such that (Ajxk +Bjuk) ∈ X̄k+1 ∀j ∈ Z+

N .

By definition, the roust control invariant tube for k = K

X̄K = X̂K (6)

and for k = K − 1, . . . , 0

X̄k =
{
x ∈ X̂k | ∃u ∈ U such that (Ajx+Bju) ∈ X̄k+1 ∀j ∈ Z+

N

}
(7)

As indicated, the calculation of the robust control invariant tube proceeds backwards and performed off-line. Since X̂k

are polytopic sets, definition (7) implies that X̄k are polytopic as well for all k ∈ Z0
K . Consequently, the control invariant

tube can be derived using linear programming approaches.
Once obtained, the control invariant tube provides some information about the existence of solutions to the inverse prob-
lem. Formally,

Proposition 1 (Sufficiency). If X̄k 6= ∅ ∀k ∈ Z0
K and x0 ∈ X̄0 then (4) has a solution.

Proof. If xk ∈ X̄k definition (7) implies that ∃uk ∈ U such that Ω(xk, uk) ∈ X̄k+1 where Ω(xk, uk) = Conv{Ajxk +
Bjuk, j ∈ Z+

N} thus f(xk, uk) ∈ X̄k+1 since f(xk, uk) ∈ Ω(xk, uk), for all k ∈ Z0
K−1. By the principle of induction

if x0 ∈ X̄0 there exists an input sequence {u0, . . . , uK−1} such that {x1, . . . , xK} ∈ {X̄1, . . . , X̄K} ⊆ {X̂1, . . . , X̂K}
subject to (1a) which completes the proof.

Although it gives a sufficient condition for solvability, the calculation of control invariant tube is not constructive since
it do not provide the solution (input sequence) to the formulated problem. However, in case the control invariant tube
exists the corresponding constraint satisfaction problem (4) can be efficiently solved by linear/quadratic programming
approaches. To formulate the solution strategies we rely on the following assumption.

Assumption 3. X̄k 6= ∅, ∀k ∈ Z0
K and x0 ∈ X̄0.

Using this, let us consider the following MPC strategy (MPC1): at each sampling instant k = 0, 1, . . . ,K − 1
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1. Measure the value of the state vector xk.

2. Determine the input u?k = arg min {e′uk | Ajxk +Bjuk ∈ X̄k+1, uk ∈ U ∀j ∈ Z+
N}.

3. Apply the control input uk = u?k to (1).

Due to the fact that X̄k and U are polytopic sets the optimization problem defined in step 2 is a linear program. If
assumption 3 holds it follows from proposition 1 that the linear program has a feasible solution at each timestep k, thus
the presented MPC strategy MPC1 solves (4).
The formulated linear program uses a one step prediction of the system trajectory (lookahead) which makes the solution
approach computationally efficient due to the small number of decision variables and constraints. However, computational
efficiency comes with the price that the produced solutions may not be accepted by design engineers since the approach
based on one step lookahead might involve problems regarding the smoothness of the solutions. To overcome this diffi-
culty, an approach is proposed in the next section which incorporates smoothness criteria into the cost function and uses
multistep lookahead.

Smoothness objective
Let us define the ”nominal system”

x̄k+1 = Āx̄k + B̄uk (8)

where the system matrices [Ā B̄] = N−1
∑N

j=1[Aj Bj ] are the arithmetic mean of the vertices [Aj Bj ] and x̄k ∈ Rn is
the state of the nominal system. Given an initial state xk and input uk the successor state given by the nominal dynamics
is located at the ”center” of Ω(xk, uk) which bounds the one step lookahead spread of the successor state given by the
dynamics (1a). From this perspective, (1a) can be viewed as an ”uncertain system” with the dynamics

xk+1 = Āxk + B̄uk + wk (9)

where wk ∈ (Ω(xk, uk) 	 (Āx̄k + B̄uk)) (regarded as disturbance) captures the mismatch between (1a) and (8). Using
this, let us consider following program

minimize
{u0,...,uL−1}

L−1∑
l=0

|ul+1 − ul|2 (10a)

subject to x̄0 − xk = 0 (10b)
x̄l+1 − Āx̄l − B̄ul = 0 (10c)

Aj x̄l +Bjul ∈ X̄k+l+1 ∀j ∈ Z+
N (10d)

ul ∈ U ∀l ∈ Z0
L−1 (10e)

and the MPC strategy (MPC2): at each sampling instant k = 0, 1, . . . ,K − 1

1. Measure the value of the state vector xk.

2. Specify the lookahead horizon L.

3. Determine the input sequence {u?0, . . . , u?L−1} which solves (10).

4. Apply the control input uk = u?0 to (1).

Due to the fact that X̄k and U are polytopic sets (10) is a quadratic program. The objective function determines a
smoothness condition for the input sequence {u0, . . . , uL−1} on a given lookahead horizon L. If assumption 3 holds, it
follows from proposition 1 that (10) has a feasible solution at each timestep k, thus the presented MPC strategy MPC2
solves (4) (see proof of proposition 1).

Relaxed/setpoint–tracking problem
The derivation of the solution approach is based on assumption 3 demanding the existence of the control invariant tube.
However, it turns out that most of the cases (especially in a request for rapid load changes) the control invariant tube for
system (1) does not exist if the target sets are defined by 3 which implements strict equality. Consequently, on one hand,
the solution to the inverse dynamics problem can not be rendered by the proposed MPC strategies (MPC1 and MPC2)
while on the other in such cases the problem may not have a solution at all which is well known by design engineers
revealed by studies using process specific knowledge.
In such cases it is desirable to satisfy one of the tracking objectives (generator power or steam pressure). A common
engineering approach to choose this objective is based on preference ordering where the objectives are ranked according
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to their (relative) importance. The satisfaction of the objective having higher importance is the main goal while the
other objective can deviate but should remain as ”close” to the desired one as possible. The problem of interest has two
objectives which are ordered as follows: tracking of (1) generator power setpoint and (2) pressure setpoint. From power
plant operational point of view this means that during transients the satisfaction of the demand (the production of the
required electric power) is the main priority and the steam pressure is allowed to fluctuate within acceptable bounds. In
steady state operation however no deviation from the setpoints are allowed.
Utilizing preference ordering this section proposes an approach which relaxes (3) and formulates an optimization problem
for setpoint tracking. By expressing (1b) the (scalar) objectives in a preference order are[

rk,1
rk,2

]
=

[
C1

C2

]
xk +

[
yc,1
yc,2

]
. (11)

Using this, the target set for the relaxed problem is defined as follows:

X̂k := {x ∈ Xk | |C1x+ yc,1 − rk,1| ≤ ε, rk,2 ≤ C2x+ yc,2 ≤ r̄k,2}, ∀k ∈ Z0
K (12)

where the tolerance ε > 0 is a sufficiently small parameter and rk,2, r̄k,2 are the upper and lower boundaries for the
second objective. While the parameter ε is problem dependent representing meaningful or acceptable bound for constraint
satisfaction from engineering perspective, the pressure boundaries rk,2 and r̄k,2 are well defined and given by the system
operators. Since both objectives are scalar, X̂k are polytopic sets ∀k ∈ Z0

K .
Given ε, rk,2 and r̄k,2, ∀k ∈ Z0

K similarly to the former approaches the robust control invariant tube is calculated
according to (6) and (7) using definition (12) to define the target sets. In the sequel, we restrict our attention to the case
when the robust control invariant tube for the relaxed problem exists (i.e. target sets are defined according to (12) and
assumption 3 holds ) where proposition 1 guarantees the solvability. On the other hand, it must be pointed out that, since
proposition 1 gives a sufficient condition the non–existence of the robust control invariant tube do not imply that the
problem do not have a solution. However, the investigation os such case (robust control invariant tube does not exist) is
out of scope of the current paper. Similarly to (10) the tracking of the pressure setpoint (2nd objective) is formulated as
an objective function of the following program

minimize
{u0,...,uL−1}

N∑
j=1

L−1∑
l=0

(yl − rk+l,2)2 (13a)

subject to x̄0 − xk = 0 (13b)
x̄l+1 − Āx̄l − B̄ul = 0 (13c)
yl − C2xl − yc,2 = 0 (13d)

Aj x̄l +Bjul ∈ X̄k+l+1 ∀j ∈ Z+
N (13e)

ul ∈ U ∀l ∈ Z0
L−1 (13f)

Since X̄k and U are polytopic ∀k ∈ Z0
K (13) is a quadratic program. Using this, let us consider the following MPC

strategy (MPCR): at each sampling instant k = 0, 1, . . . ,K − 1

1. Obtain the value of the state vector xk.

2. Specify the lookahead horizon L.

3. Determine the input sequence {u?0, . . . , u?L−1} which solves (13).

4. Apply the control input uk = u?0 to (1).

Proposition 1 implies that (13) has a feasible solution at each timestep k, thus the presented MPC strategy MPCR solves
the relaxed problem (see proof of proposition 1).

Application

The proposed approach was tested with a mathematical model describing the dynamic behavior of a Circulating Fluidized
Bed (CFB) power plant. The plant model built up by transfer function blocks under MATLAB Simulink capturing the
following relationships: fuel power – steam generation (thermal inertia), steam storage – steam pressure (storage capacity)
and the dynamics of turbo–generator unit. Using ∆t = 2 (sec) time discretization the sate space description resulted in
the following bilinear model

xk+1 = A0xk + u2,kA1xk +Buk (14a)
yk = Cxk + yc (14b)
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Figure 2: Results of the tracking problem problem generated by the MPCR approach for a CFB plant at 4% MCR/min load change.
The allowed pressure deviation was ±5 (Bar). Process output charts are located at the top while process input charts are at the bottom
of the figure. Setpoints are highlighted by red color.
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Figure 3: Results of the tracking problem problem generated by the PID control approach for a CFB plant at 4% MCR/min load change.
The allowed pressure deviation was ±5 (Bar). Process output charts are located at the top while process input charts are at the bottom
of the figure. Setpoints are highlighted by red color.

including an 11 dimensional state vector (x ∈ R11). For this particular case, the restriction on the valve opening u2,k ∈
[0, 1], ∀k ∈ Z0 makes the derivation of the bounding LTI systems straightforward. It is easy to see that (14a) is bounded
by the two LTI systems: A0xk +Buk and (A0 +A1)xk +Buk.
The possible load demand scenario for this plant vary in a wide range. Usual load ramps are in the range of 2-4% MCR/min
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(percentage of the maximum continuous rate per time) however, the requirements are continuously tightening. Using this,
the tested scenario was a 40% load change from 50% to 90% MCR with a ramp of 4% MCR/min on a 20 minute time
window. This scenario required the application of MPCR strategy which solves the relaxed problem. The MPCR run
with the following parameter settings: prediction horizon 10 min (L = 300 steps) and constraint satisfaction tolerance
ε = 0.05%. Figure 2 plots the input–output trajectories generated by the MPCR strategy for the outlined scenario.
Given the process model, a common approach by design engineers to solve the related problem in a ”mathematical sense”
is the application of PID controller(s). As the problem is constrained some challenges are introduced for the PID tuning.
Figure 3 plots the input–output trajectories generated by a ”typical” PID controller which is used by design engineers for
design, development and research purposes.
As can be seen both approaches satisfy the requirements for generator power setpoint tracking however the tracking
of the pressure signal and the smoothness of the boiler load input trajectory is less impressive if PID control is used.
However, it must be pointed out that the above comparison has only informative significance since no parameter tuning
was performed to find the ”optimal” values of the PID controller for the test scenario. On the other hand, the main purpose
of the presented examples is to highlight the potential of the proposed approach while comparison with other approaches
and benchmarking is out of the scope of the current paper.

Summary and Conclusions

This paper proposes a tube–based robust model predictive control approach to solve the inverse–dynamics/setpoint–
tracking problems related to the operation of power plants. The problem reads as follows: given a power plant process
model, how to manipulate the process inputs (boiler load and turbine valve opening) so that the process outputs (generator
power and steam pressure) follow a pre–determined (time varying) setpoint. One of the main objectives of this paper
was to provide a solution approach to the outlined problem in a ”purely mathematical” manner, that is, the mathematical
model of the process is known but the related process knowledge (physical interpretation of the mathematical model) is
not available.
Given the discrete time mathematical model model, the key idea of the proposed approach is to bound the spread of the
one step ahead predicted state of the nonlinear plant by a polytope whose vertices are set by linear time invariant systems.
Relying on this idea, robust control invariant tubes for the nonlinear system are defined and sufficient condition for the
solvability of the problem is formulated. Using this, three different MPC strategies were proposed, two for the inverse
problem (with and without input trajectory smoothness condition) and one for the tracking which was formulated by
relaxation (assuming that the inverse problem has no solution). A setpoint tracking application was presented using a
transfer function model of a Circulating Fluidized Bed (CFB) power plant.
The proposed approach was formulated without the loss of generality thus it is applicable for plant models of any detail
(including finite volume models as well as transfer function description). Under mild assumptions the approach provide a
computationally tractable alternative to handle power plant inverse–dynamics and setpoint–tracking problems.
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