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Summary. At the intermediate Reynolds number Re = 100, a two-dimensional, linearly-sprung, circular cylinder restricted to move
in the cross-flow direction and incorporating a rotational nonlinear energy sink (NES; consisting of a mass freely rotating about the
cylinder axis and whose angular motion is restrained by a linear viscous damper) can undergo repetitive cycles of slowly decaying
oscillations — which can lead to significant vortex street elongation with partial stabilization of the wake — interrupted by chaotic
bursts. We construct a reduced-order model of the fluid–structure interaction dynamics and employ analytical techniques to show that
the strongly modulated response is the manifestation of a resonance capture into a slow invariant manifold (SIM) that leads to targeted
energy transfer from the cylinder to the rotator. Capture into the SIM corresponds to transient cylinder stabilization, and escape from
the SIM to chaotic bursts.

Formulation of the fluid–structure interaction problem
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Figure 1: Circular cylinder in
cross-flow with rotational NES.

We consider a two-dimensional circular cylinder of mass Mcyl and diameter D, im-
mersed in an incompressible fluid of density ρf and kinematic viscosity ν, mounted on
a linear spring of stiffness Kcyl, and allowed to move only in the direction transverse to
the free stream. A mass MNES is attached to the cylinder and freely rotates at constant
radius r0 about the cylinder’s generatrix (cf. Fig. 1). Inertial coupling allows energy
to be transferred from the cylinder to the rotator, part of which is dissipated by a lin-
ear rotational viscous damper about the axis of rotation of the NES [1]. The Reynolds
number Re = UD/ν is based on the cylinder diameter and on the free-stream velocity.
We define a dimensionless time τ = tU/D, scale the length, velocity and pressure by
D, U and ρfU2/2, respectively, and introduce the dimensionless quantities y = Y/D,
r̄0 = r0/D, m∗ = ρb/ρf as well as a mass ratio εr = MNES/(Mcyl +MNES). The
equations governing the motion of the two coupled oscillators are then expressed in
non-dimensional form as
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where ˙( ) = d ( ) /dτ and ρb is the density of the cylinder with the NES [2]. The lift force FL has been scaled in favor
of a dimensionless lift coefficient CL = 2FL/(ρfU

2D), while the natural frequency of the linear spring supporting the
cylinder has been non-dimensionalized as ω∗

r
2 = (2πf∗n )

2
= D2Kcyl/[U

2(Mcyl+MNES)], and a dimensionless damping
coefficient has been defined as λr = DCNES/(UMNES). The density ratiom∗ is set equal to 10, and the Reynolds number
to Re = 100. The natural frequency f∗n of the linear spring is chosen close to the normalized shedding frequency of a
stationary circular cylinder at Re = 100, which is equal to the Strouhal number St = 0.167. The cylinder is initially at
rest, while the NES initial conditions are selected as θ(0) = π/2 and θ̇(0) = 0. Our computational approach is based
on the spectral-element code Nek5000 [3]. The Navier-Stokes equations are cast in an arbitrary Eulerian-Lagrangian
frame and integrated forward in time in a staggered fashion, together with (1) governing the motion of the two coupled
oscillators.

Physical phenomena for finite mass ratios

For NES parameters εr = 0.33, λr = 0.002745 and r̄0 = 0.458, the dynamics is characterized by successive cycles of
regular motion of the cylinder and the NES interspersed by chaotic bursts. During periods of regular motion, the cylinder
oscillation amplitude gradually decreases and the NES becomes locked in a regime of steady rotation that corresponds
to 1:1 resonance capture with the cylinder. As the slowly decaying cycle progresses, the amplitudes of the lift and drag
coefficients reduce drastically, while the cylinder, NES and lift coefficient are in clear 1:1:1 resonance, dominated by a
single frequency that slowly decreases and reaches a minimum right before the dynamics transitions toward instability.
More interesting, as the lift coefficient approaches zero and the drag coefficient tends to a minimum, the structure of the
flow aft of the cylinder changes noticeably. The attached vorticity is considerably elongated and straightened, suggesting
that the steady, symmetric solution (unstable at Re = 100) is partially stabilized due to the indirect action of the NES on
the flow (cf. Fig. 2) [2, 4].
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Order reduction of the dynamics and numerical validation

We analytically study the dynamics of the system governed by (1) in the aforementioned regime of resonance [4]. The
cylinder interacts with the surrounding fluid only through the lift coefficientCL, for which numerical data provides enough
information to formulate an ansatz ĈL for the asymptotic analysis. In order to apply classical complexification-averaging
techniques, we impose the condition of 1:1:1 resonance and formally introduce the slowly varying instantaneous frequency
ω = ω(τ) that depends on the amplitude of cylinder oscillations. We then use a slow-fast partition of the dynamics by
letting R(τ)ejζ(τ) = ẏ + jω(τ)y and θ = ±ζ(τ) + ψ(τ). The instantaneous frequency ω and “fast” phase ζ are related
through ζ̇(τ) = ω(τ). We assume an ansatz lift coefficient of the form ĈL = B(τ) sin[ζ(τ) + η(τ)]. In the above
expressions, R, ψ, B and η are slowly varying functions of time. These steps are consistent with the numerical results
in that they incorporate the essential assumption that, in the regime of 1:1:1 resonance, the NES, the cylinder and the
lift coefficient are dominated by a single, slowly varying frequency ω and, consequently, that additional small-amplitude
harmonics may be neglected.
Traditional averaging procedure yields the complex slow-flow equations, from which we extract the expression of the
slow invariant manifold (SIM) of the problem, given by R cosψ = −2λrr̄0. The SIM is composed of two branches
(the one stable, the other unstable), and breaks down by the mechanism of saddle-node bifurcation. Past this point, the
slow flow leaves the regime of 1:1:1 resonance and enters a different regime of dynamics. At the super-slow scale, on
the stable branch of the SIM, further approximations and algebraic manipulations allow us to reduce the dynamics down
to a system of one nonlinear ordinary differential equation governing the slow modulation of the fast oscillations of the
cylinder during the slowly decaying cycle, Ṙ = f(R,ω); and one algebraic equation relating the frequency of the cylinder
oscillation to its amplitude, ω = g(R). The asymptotic analysis is validated by comparing the analytical predictions to
numerical data obtained with Nek5000. Figure 2 shows the “sliding” of the trajectories on the stable branch of the slow
invariant manifold. In the absence of a stable fixed point on the SIM, the “sliding” of the dynamics continues until the
trajectory escapes the SIM and transitions into intermittent chaos, after which the dynamics is again captured on the stable
branch of the SIM, and the previous cycle starts anew.
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Figure 2: Capture into the 1:1 slow invariant manifold, for NES parameters εr = 0.33, r̄0 = 0.458 and λr = 0.002745.
From left to right: comparison between the raw data obtained by direct numerical simulation and the analytical prediction
resulting from integration of the reduced-order slow-flow model (ROM); and spanwise vorticity field at the beginning (top
right) and end (bottom right) of the slowly decaying cycle highlighting significant elongation of the attached vorticity.

Conclusions

The mechanism of passive VIV suppression of a sprung cylinder in cross-flow with a rotational NES characterized by
successive cycles of regular, slowly decaying motion interrupted by chaotic bursts, is proven to be the result of a resonance
capture into the stable branch of a slow invariant manifold. This clarifies the action of the rotator on the resonance
dynamics of the fluid–structure interaction problem, including the partial wake stabilization observed for finite mass
ratios.
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