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Summary. We develop an optimal control algorithm to change the period of a perioit wsing a minimum energy input, which
also minimizes the transversal distance to the uncontrolled periodic trgjeor algorithm uses a two-dimensional augmented phase
reduction technique based on both isochrons and isostables. We shawrtantrol algorithm is effective even when a large change
in time period is required or when the nontrivial Floquet multiplier of the pdorbit is close to one; in such cases, an analogous
control algorithm based on standard phase reduction fails.

Augmented Phase Reduction

Periodic orbits are fundamentally important in dynamigatems theory, and they arise in many systems of physical,
biological, and technological interest. The study of padidarbits has benefitted greatly from the use of standardgha
reduction based on isochrons, in which a single scalar preagble captures the essence of an oscillation and itenssp

to perturbations [1, 2, 3]. However, there are situatiomsvioich a recently-developed augmented phase reductiarepro
dure [4] based on both isochrons and isostables can vagtipira the ability to understand and control the dynamics of
a system with a periodic orbit. Consider the system

‘(%‘ —Fx)+U(®), xcR 0
whereU(t) € R™ is an external perturbation. Standard phase reduction eamséd to reduce this system to a one
dimensional system for the phagée [0, 27) given by [3]:

0=w+20)TU(). )

For every nontrivial Floquet multipliex;, with the corresponding eigenvectgr the set of isostable coordinates is defined
as [4]
¥i(x) = el V7l (xr — x¢) exp(—log(\)tr/T), i=1,...,n—1. 3)

Herexr andir € [0,T) are defined to be the position and the time at which the ti@jgdirst returns to the isochrdn,
ande; is a vector with 1 in the'” position and 0 elsewhere. As shown in [4], we get the foll@éguations for); and
its gradientV.,;)1; under the flonk = F(x):

b = ki, 4)
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wherek; = log(\;)/T, DF is the Jacobian of’, and/ is the identity matrix. We refer to this gradie¥t, ;yv; = Z;(0)
as theisostable response curve (IRC). Its T-periodicity along with the normalization conditidvix,v; - v; = 1 gives a
unique IRC. It gives a measure of the effect of a control inpulriving the trajectory away from the periodic orbit. It is
often the case that only the isostable coordinate correpgo the Floquet multiplier closest to the unit circle wiéed
to be considered. Then we obtain the augmented phase r@ducti

0 = w+Z270)-U), (6)
b= kp+IT0)-U®), )

where 7 is the (infinitesimal) phase response curve. Since we areamisidering one isostable coordinate, we have
removed the subscript far. Ignoring they equation gives the standard phase reduction.

Optimal Timing Control for Hopf Bifurcation Normal Form

An optimal control law based on the augmented phase redutttiohange the period of a periodic orbit is found by using
the cost functiorC'lu(t)]:

Clu(t)] = /0 " [ 1 507 + Xy (6w = 200ut)) + Ao (6 — ko~ TO)u(n))] at. ®)

The first term in the cost function ensures that the contmluaes a minimum energy input, and the second term mini-
mizes the transversal distance (in the direction of the $ostable coordinate) from the uncontrolled periodic trajec-
tory. The last two terms ensure that the system obeys theentgohphase reduction, with and )\, being the Lagrange
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Figure 1: Top row shows the uncontrolled periodic orbit, PRC, and IRGh® Hopf normal form with parameters given in the main
text. The middle (resp., bottom) row shows the trajectory, time seriescamttol input for control based on the augmented (resp.,
standard) phase reduction. Control is on (resp., off) for the postiovn by the thick black (resp., thin blue) line. The trajectory starts
at the small red circle. The red horizontal line shows the amplitude of tbentirolled periodic orbit.

multipliers. The resulting Euler-Lagrange equations afeesl as a two point boundary value problem with the boundary
conditions

0(0)=0,  0(Ty)=2r,  ¥(0)=0,  ¥(T1)=0. 9)

The last boundary condition makes sure that trajectory badk on the periodic orbit. The corresponding optimal calntr
problem with standard phase reduction [5] can be obtainexetiings = 0 and\; = 0 in the cost function.

We use our control algorithm to change the period of a periodhit near the supercritical Hopf bifurcation. The normal
form of the supercritical Hopf bifurcation with an extermantrol inputu(t) is:

& = ax—by+ (2*+yH)(cx — dy) + u(t), (20)
= br+ay+ (22 +y?)(dx + cy). (11)

With zero control inputs(t), ¢ < 0, anda < 0, the system has a stable fixed point. Agcreases through 0, a stable
periodic orbit is born, and the fixed point becomes unstabfi¢h parameters = 0.004,b = 1,¢ = —1,d = 1, the system
has a stable periodic orbit with the time perifd= 6.2582 and the nontrivial Floquet multiplierxp(—2aT") = 0.9512.

The PRC and the IRC are sinusodial with amplituq/ééit—f and\/l + f—i, respectively. The top row of Figure 1 shows
the uncontrolled periodic orbit, PRC, and IRC for the givangmeter values. The control parametei@nd 3 are taken

to be unity. We calculate the optimal control with = 1.37 = 8.1356 both for the augmented and standard phase
reduction. The resulting trajectories, time series, amttrobinputs are shown in the bottom two rows of Figure 1. As
seen in this figure, the control based on the augmented phdsetion does much better in changing the period of the
periodic orbit while also keeping the trajectory close te plreriodic orbit for the uncontrolled system. A parametiicly
shows that the augmented phase reduction based controtits mare effective than the standard phase reduction based
control, especially when the desired change in period geland/or the nontrivial Floquet multiplier of the perioditit

is close to 1. A similar approach for other systems, inclgdilgher-dimensional systems, shows comparable results.
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