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Summary. We develop an optimal control algorithm to change the period of a periodic orbit using a minimum energy input, which
also minimizes the transversal distance to the uncontrolled periodic trajectory. Our algorithm uses a two-dimensional augmented phase
reduction technique based on both isochrons and isostables. We show that our control algorithm is effective even when a large change
in time period is required or when the nontrivial Floquet multiplier of the periodic orbit is close to one; in such cases, an analogous
control algorithm based on standard phase reduction fails.

Augmented Phase Reduction

Periodic orbits are fundamentally important in dynamical systems theory, and they arise in many systems of physical,
biological, and technological interest. The study of periodic orbits has benefitted greatly from the use of standard phase
reduction based on isochrons, in which a single scalar phasevariable captures the essence of an oscillation and its response
to perturbations [1, 2, 3]. However, there are situations for which a recently-developed augmented phase reduction proce-
dure [4] based on both isochrons and isostables can vastly improve the ability to understand and control the dynamics of
a system with a periodic orbit. Consider the system

dx

dt
= F (x) + U(t), x ∈ R

n, (1)

whereU(t) ∈ R
n is an external perturbation. Standard phase reduction can be used to reduce this system to a one

dimensional system for the phaseθ ∈ [0, 2π) given by [3]:

θ̇ = ω + Z(θ)T U(t). (2)

For every nontrivial Floquet multiplierλi, with the corresponding eigenvectorvi, the set of isostable coordinates is defined
as [4]

ψi(x) = eT
i V −1(xΓ − x0) exp(− log(λi)tΓ/T ), i = 1, . . . , n − 1. (3)

HerexΓ andtΓ ∈ [0, T ) are defined to be the position and the time at which the trajectory first returns to the isochronΓ0,
andei is a vector with 1 in theith position and 0 elsewhere. As shown in [4], we get the following equations forψi and
its gradient∇γ(t)ψi under the flowẋ = F (x):

ψ̇i = kiψi, (4)
d∇γ(t)ψi

dt
=

(

kiI − DF (γ(t))T
)

∇γ(t)ψi, (5)

whereki = log(λi)/T , DF is the Jacobian ofF , andI is the identity matrix. We refer to this gradient∇γ(t)ψi ≡ Ii(θ)
as theisostable response curve (IRC). Its T -periodicity along with the normalization condition∇x0

ψi · vi = 1 gives a
unique IRC. It gives a measure of the effect of a control inputin driving the trajectory away from the periodic orbit. It is
often the case that only the isostable coordinate corresponding to the Floquet multiplier closest to the unit circle will need
to be considered. Then we obtain the augmented phase reduction

θ̇ = ω + Z
T (θ) · U(t), (6)

ψ̇ = kψ + I
T (θ) · U(t), (7)

whereZ is the (infinitesimal) phase response curve. Since we are only considering one isostable coordinate, we have
removed the subscript forψ. Ignoring theψ equation gives the standard phase reduction.

Optimal Timing Control for Hopf Bifurcation Normal Form

An optimal control law based on the augmented phase reduction to change the period of a periodic orbit is found by using
the cost functionC[u(t)]:

C[u(t)] =

∫ T1

0

[

αu2 + βψ2 + λ1

(

θ̇ − ω −Z(θ)u(t)
)

+ λ2

(

ψ̇ − kψ − I(θ)u(t)
)]

dt. (8)

The first term in the cost function ensures that the control law uses a minimum energy input, and the second term mini-
mizes the transversal distance (in the direction of the slowisostable coordinateψ) from the uncontrolled periodic trajec-
tory. The last two terms ensure that the system obeys the augmented phase reduction, withλ1 andλ2 being the Lagrange



Figure 1: Top row shows the uncontrolled periodic orbit, PRC, and IRC for the Hopf normal form with parameters given in the main
text. The middle (resp., bottom) row shows the trajectory, time series, andcontrol input for control based on the augmented (resp.,
standard) phase reduction. Control is on (resp., off) for the portionshown by the thick black (resp., thin blue) line. The trajectory starts
at the small red circle. The red horizontal line shows the amplitude of the uncontrolled periodic orbit.

multipliers. The resulting Euler-Lagrange equations are solved as a two point boundary value problem with the boundary
conditions

θ(0) = 0, θ(T1) = 2π, ψ(0) = 0, ψ(T1) = 0. (9)

The last boundary condition makes sure that trajectory endsback on the periodic orbit. The corresponding optimal control
problem with standard phase reduction [5] can be obtained bysettingβ = 0 andλ2 = 0 in the cost function.
We use our control algorithm to change the period of a periodic orbit near the supercritical Hopf bifurcation. The normal
form of the supercritical Hopf bifurcation with an externalcontrol inputu(t) is:

ẋ = ax − by + (x2 + y2)(cx − dy) + u(t), (10)

ẏ = bx + ay + (x2 + y2)(dx + cy). (11)

With zero control inputu(t), c < 0, anda < 0, the system has a stable fixed point. Asa increases through 0, a stable
periodic orbit is born, and the fixed point becomes unstable.With parametersa = 0.004, b = 1, c = −1, d = 1, the system
has a stable periodic orbit with the time periodT = 6.2582 and the nontrivial Floquet multiplierexp(−2aT ) = 0.9512.

The PRC and the IRC are sinusodial with amplitudes
√

d2+c2

−ac
and

√

1 + d2

c2 , respectively. The top row of Figure 1 shows

the uncontrolled periodic orbit, PRC, and IRC for the given parameter values. The control parametersα andβ are taken
to be unity. We calculate the optimal control withT1 = 1.3T = 8.1356 both for the augmented and standard phase
reduction. The resulting trajectories, time series, and control inputs are shown in the bottom two rows of Figure 1. As
seen in this figure, the control based on the augmented phase reduction does much better in changing the period of the
periodic orbit while also keeping the trajectory close to the periodic orbit for the uncontrolled system. A parametric study
shows that the augmented phase reduction based control is much more effective than the standard phase reduction based
control, especially when the desired change in period is large and/or the nontrivial Floquet multiplier of the periodicorbit
is close to 1. A similar approach for other systems, including higher-dimensional systems, shows comparable results.
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