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Summary. Delay-differential equations (DDEs) with state-dependent delays suffer from a lack of regularity: even if all coefficients in
the equations are apparently smooth, the dependence of the solution on the initial conditions is not continuously differentiable more than
once in any of the known choices for phase space. We show that local center-unstable manifolds near equilibria can still be as smooth
as the spectral gap in the linearization permits. This result makes many ready-to-use normal form transformation formulas developed
by Govaerts, Kuznetsov et al for ordinary differential equations (recently extended to DDEs with constant delays) applicable to DDEs
with state-dependent delays. We give a first demonstration how normal form coefficients can be obtained for a Hopf bifurcation in a
scalar DDE with several nesting levels for the delays.

Delay-differential equations with state-dependent delays

The general form for a delay-differential equation (DDE) with (bounded) state-dependent delay (abbreviated here sd-
DDEs) is

ẋ(t) = f(xt, p) (1)

where x(t) ∈ Rn is the current state, p ∈ Rnp are the system parameters, f maps C([−τmax, 0];R
n)×Rnp into Rn, and

we use the notation xt(θ) = x(t+ θ). (C0 := C([−τmax, 0];R
n) is the space of continuous functions on [−τmax, 0] with

values in Rn. Similarly CK will be the space of k times continuously differentiable functions.) Hence, the evolution of
(1) needs a function segment on [−τmax, 0] as its initial value. Examples for models where state-dependent delays occur
are blood-cell formation models [1], models for regenerative cutting when the tool has finite stiffness in the direction
tangential to the rotation direction of the work piece [4], or time-delayed feedback control with continuous adjustment of
the time delay [7] (see Hartung et al [3] for a review of applications and theory of sd-DDEs up to 2006).
Whether the delay is state dependent can inferred from (or even defined by) a lack of regulatiy of the right-hand side f . If
f : C([−τmax, 0];Rn) × Rnp 7→ Rn is continuously differentiable with respect to its first argument we speak of a DDE
with constant delays. To illustrate this problem, let us consider the simple equation

ẋt = p− x(t− x(t)) (2)

for p ≈ π/2. The functional f for (2) is f(x, p) = p − x(−x(0)), which is well defined for x close to π/2 (that is,
‖x− π/2‖∞ := max{|x(θ)− π/2| : θ ∈ [−τmax, 0]} � 1 with, for example, τmax = π). The kth derivative of f exists
only if x is itself k times differentiable. For example, the first partial derivative of f is

∂1f(x, p)y = −y(−x(0)) + x′(−x(0))y(0) (using prime for the derivative of x with respect to its argument).

However, trajectories of (2) (and generally (1)) are not k times differentiable for small t. Thus, the dependence of the
solution xt at times t > 0 on the initial condition x0 is not differentiable if we choose C0 as our phase space (the
solution is not even unique, see [3]). Walther proved that the solution xt of a sd-DDE ẋ(t) = f(xt) (without parameter)
depends continuously differentiable once on x0 on the manifold D1 := {x ∈ C1([−τmax, 0];Rn) : x′(0) = f(x)} if
f is continuously differentiable as a map from C1 7→ Rn, if the derivative ∂f(x) can be applied to continuous linear
deviations y ∈ C0, and if the map (x, y) ∈ C1 × C0 7→ ∂f(x)y ∈ Rn is continuous [12]. For the example (2) Walther’s
condition means that the derivative ∂1f(x, p)y = −y(−x(0)) + x′(−x(0))y(0) can depend on x′ but not on y′ (only on
y). This is the best known result for dependence of the solution xt on its initial value x0. In particular, restricting the
phase space further (to subsets of D1 with higher order of differentiability and possibly more constraints) does not help
to gain regularity of the solution map.

Bifurcation theory

The situation is better when one studies invariant sets such as equilibria, periodic orbits or finite-dimensional invariant
manifolds. Computation of equilibria and their non-dynamic bifurcations (such as saddle-node bifurcations) follows
exactly that of ODEs (solving the smooth algebraic system f(xeq, p) = 0, where xeq is a constant function). The stability
of an equilibrium xeq is determined by the linear DDE ẏ(t) = ∂1f(xeq, p)yt with constant coefficients [3].
Similarly, periodic orbits, as solutions of periodic boundary value problems (BVPs), can be determined as solutions of
finite-dimensional smooth algebraic systems of equations such that all computations typically performed in numerical
bifurcation analysis software (such as DDE-Biftool [2, 9] or knut [8]) are well posed. Stability of periodic orbits is again
determined by a linear DDE with periodic coefficients [6]. The following theorem covers local bifurcation theory near
equilibria more generally by stating that near an equilibrium there exists a local centre-unstable manifold, the smoothness
of which is only limited by the spectral gap.
Let f : C0([−τmax, 0];Rn) 7→ Rn be continuous such that f restricted to Ck is k times continuously differentiable and
that its kth derivative can be extended to multi-linear deviations in Ck−1 continuously (similar to Walther’s condition
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for the first derivative). We assume that f(0) = 0 (putting the equilibrium at the origin and dropping the parameter p
without loss of generality) and that ∂f(0) has a spectral gap, that is, it has no eigenvalues with real part in [−λs,−λc]
(where 0 < λc < λs). Let nc < ∞ be the dimension of the invariant subspace of ∂f(0) in C0 corresponding to the
eigenvalues with real part greater than −λc, and Ac ∈ Rnc×nc be the restriction of ∂f(0) to this subspace. Then there
exists a graph G : Rnc 7→ C0 such that solutions of ẋ(t) = f(xt) starting in the image rgG of G stay in rgG for all
times t ∈ R for which they stay small. If x0 = G(x0c) then xt = G(xc(t)), where xc(t) satisfies a nc-dimensional ODE
ẋc(t) = Acxc(t) + g(xc(t)), xc(0) = x0c . The above existence result was already obtained in [10]. However,

G (and, hence, g) is k times continuously differentiable if k < λs/λc.

When one includes this smoothness statement, the conclusions for the centre-unstable manifold G of the sd-DDE are
as strong as they are in the case for ODEs. The proof of the theorem uses the graph transform, but does not require
differentiability of the (semi-)flow in arbitrary elements of the phase space.
The result permits us to transfer methods for automatic normal form computations to sd-DDEs. These methods have
recently been introduced to DDEs with constant delays in [5, 11], but they assume the existence of a smooth centre
manifold.
As an illustrative example, we analyze a generalization of (2) using DDE-Biftool. Consider the equation

ẋ(t) = f(xt, p) = p− x(t− x(t− . . . x(t− x(t)) . . .)) with k levels of nesting. (3)

DDE-Biftool [9] permits bifurcation analysis of this type of equation, including continuation of periodic orbits and their
bifurcations. A modification of the normal form extension for equilibria (originally by B. Wage [11] for constant delays)
can now determine the stability of the Hopf bifurcation of x = p at p = π/2 for arbitrary nesting levels k in (3). Figure 1
shows the families of periodic orbits branching off and the corresponding Lyapunov coefficients determining stability.

Figure 1: Lyapunov coefficients and families of periodic orbits for (3) at Hopf bifurcation at p = π/2, x = p.
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