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Summary. Uncertainty analysis of stability lobe diagrams is an essential step for the selection of efficient and solid operating
conditions. The definition of uncertain parameters can enable the illustration of the effect of required model simplifications or the
vagueness of parameter definitions. Additionally, a deeper insight into the system behavior is possible. The additional analysis has an
high contribution to the computation effort, thus, an efficient implementation is necessary, which concurrently ensures reliability of the
solution scheme.

Introduction

Machining processes are key manufacturing steps in almost every modern industry. On the one hand high material removal
rates are sought to decrease cycle times and, thus, reduce the expense. On the other hand tool wear and surface quality are
important criteria as well. Here, stability analysis of the machining processes plays an important role to find parameters
for efficient and save machining processes. The reliability of the prediction based on stability analysis is significantly
dependent on the reliability of the models, chosen parameters, and the stability analysis algorithm itself.
Simplifications in the model or vagueness of the definition of parameters are epistemic uncertainties. In contrast, aleatory
uncertainties stem from random effects. Thus, we take a possibilistic approach, fuzzy arithmetic, instead of common prob-
abilistic approaches. It is the focus of the uncertainty analysis to detect operating conditions considering the possibility
of (in-)stability due to the defined uncertainty.
For the uncertainty analysis of the stability lobe diagrams, the milling process with a helical tool are presented with focus
on helix-induced flip islands, [1]. The stability limit of the nominal system exhibit neither a closed region nor convexity,
which are interesting characteristics for the uncertainty analysis.

Helical Milling Model

The milling process with a helical tool is modeled as

ξ̈(t) + 2ζωnξ̇(t) + ωnξ(t) = −G(t, ap)(ξ(t)− ξ(t− τ)) (1)

with

G(t, ap) =
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sinq ϕ(kt cosϕ+ kr sinϕ)dϕ , (2)

see [1]. The delay differential equation considers the surface regeneration of the workpiece, which can lead to instabilities,
called chatter. The model exhibit an interesting stability lobe diagram.

Stability Analysis

Modeling machining processes by time delayed differential equations and their stability analysis is a difficult task. Both
have received and still receive a lot of interest in the scientific community. The first-order system reads ẋ(t) = A(t)x(t)+
B(t)x(t− τ) with A(t+ T ) = A(t), B(t+ T ) = B(t) and T = τ . Discretization of a period T and mapping yields the
approximated system

yi+1 = Φyi . (3)

The stability of the system can be determined by the magnitude of the critical eigenvalue λ1 of the approximated mon-
odromy matrix Φ. The system is stable if all eigenvalues are located inside the unit circle of the complex plane, i.e.
|λ1| ≤ 1.

Uncertainty Analysis

Epistemic uncertainties express a vagueness in the definition of parameters. Triangular fuzzy numbers, denoted as p̃ =
tfn(p̄, αl, αr), are most widely used as they require minimal information and assumptions. The nominal value is denoted
by p̄ and the left and right hand worst-case deviation by αl and αr. The membership function µp̃(y) takes values between
0 and 1.
Considering the mapping f : Y 7→ Z , with the domain of uncertain parameters Y ⊆ Rn and the output of the function
Z ⊆ R, Zadeh’s extension principle defines the fuzzy result ṽ = f(p̃) by

µṽ(z) =

{
supy∈Yz

µp̃(y) for Yz 6= ∅
0 otherwise

(4)
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and Yz = {y ∈ Y | f(y) = z}. The multivariate membership function of independent parameters reads µp̃(y) =
min(µp̃i

(yi))
n
i=1.

For the stability analysis, the function may be formulated as g : X ×Y 7→ Z with the domain of operating conditions X ⊂
R2, i.e. spindle speed Ω and axial immersion ap. Using the critical eigenvalue, the function reads g(x,y) = |λ1(x,y)|.
Furthermore, the stability limit is implicitly formulated, corresponding to g(x,y) = 1. The adaption of the extension
principle for this problem is

Yx = {y ∈ Y | g(x,y) = 1} . (5)

There are different solution schemes available for the calculation of the fuzzy stability limit. The application of the
transformation method [2] has been presented in [4]. Further solution schemes are presented in [3].

Investigations

The calculation of stability lobe diagrams is connected to high computational effort. Uncertainty analysis of the stability
lobe diagrams yields a multiple of the computational effort, thus, efficient solution schemes are sought. Possible solutions
schemes can base on different sampling strategies or optimization. Although, the solution schemes should be adapted to
the characteristics of the function of the critical eigenvalue g(x,y) as good as possible. These characteristics can be stated
as continuous but not continuously differentiable, and non-monotonic, see Fig. 1

Figure 1: Fuzzy stability lobe diagram of the helical milling model with uncertain cutting-force exponent q̃ = tfn(0.75, 0.075, 0.075)

Discretization by a full grid takes about 2n−1 as many evaluations as by the transformation method, note n is the number
of uncertain parameters. The transformation method is an excellent discretization scheme if the investigation is interested
in the entire fuzzy output ṽ. For stability analysis the investigation is focused on the stability limit, thus, the aim of the
calculation scheme should be the calculation of the stability limit g(x,y) = 1. Using bisection methods, as [5], the
calculation effort can possibly be reduced even further.
Optimization approaches are unfavorable solution schemes for this application, since the domain of the stability lobe
diagram X has to be discretized first and optimization problems with nonlinear constraints, see (4) and (5), have to be
solved individually. However, optimization is a possible solution scheme as well.

Conclusions

Stability lobe diagrams are important for the evaluation of appropriate machining processes or operating conditions as
spindle speed or axial immersion. The reliability of these diagrams is fundamental. Hence, uncertainties in the modeling
due to conscious simplifications or by the reason of lack of knowledge, or the vagueness of parameter definition, have to
be considered. The implementation can be obtained by using fuzzy numbers in the modeling step. An efficient and solid
solution scheme for the formulated uncertainty analysis is considered.
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