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Summary: In recent years, Udwadia et al. [1] have proposed to obtain dynamical equations using Lagrange method with 
generalised parameters as quaternions q. In 2014, a different point of view was applied by the actual author to treat problems 
whatever the nature of the parameters. Since rigidity is not (a priori) included, the main aim is the necessary use of stress tensor in 
the Virtual Work Principle (VWP), then its elimination for rigid bodies. Here we propose to show the applicability of our method 
to friction and division. 
 

Background. 

If body forces are not present for simplicity, the VWP is written for a body B 
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where ρ  is the density, a the acceleration, ϕ  the surface forces, σ  the stress tensor, and v the virtual piecewise 

displacements. In the application of some rotational motion, x=R(q(t))X, x being the actual position of the particle X, 
the virtual displacements are v=(R’i R

-1x)wi where the wi’s are arbitrary and R is a 3x3 matrix function of quaternions. 
R’I is the partial derivative of R(q1,…,qn). R is not necessarily a rotation, i.e. the constraint qTq=1 is not fulfilled as an 
a priori condition. 
If we take account of the actual virtual displacements in the above formula,, then the first term is the virtual work 

(denoted Liwi) of acceleration. Then we have  

grad v= (R’i R
-1)wi=Siwi+Aiwi, ii wSgradv ):(: σσ =  

where Si and Ai are resp. the symmetrical and anti-symmetrical parts of the matrix R’i R
-1. Now in order to eliminate 

the stress tensor, we require the relations Siwi=0.(sum on i), a priori realised if R is a rotation. In addition, it is seen 
that surface forces f occur by global quantities only (i.e. R(f) and M(f)). So the following compatibility conditions 
result: whatever the wi’s such that Siwi=0, we have 

 [-L i+M(f) ai]w i=0   (sum on i) 
(ai: dual vector of matrix Ai) under the only above hypotheses. Finally we write the rigidity constraint qTq=1 when 
quaternions are used.. 

Example 1: Contact with friction. 

We consider an homogeneous rigid wheel (centre O, radius r and mass m) rolling in a vertical plane O0x0y0  on an 
inclined line (or surface) O0X0 under the gravitational acceleration g downwards, the gravitational force being (f=-
mgy0) applied on the centre O of the wheel. We use the referential Ref=O0X0Y0Z0 with the angle between O0x0 and 
O0X0 noted a . Two-dimensional Euler parameters (p,q) are introduced to specify the rotation of the wheel, so  

R11=R22=1-2q2  ,  R12=-R21=-2pq  ,  R-1=RT/ ∆    ,   ∆ =1+4q2(p2+q2-1 
Now we introduce the virtual coefficients (wx,wy,wp,wq) associate to the parameters (x,y,p,q) and the condition wiSi=0, 
i.e.   pwp+qwq=0 . Under the above condition, the VWP is writing 

- dxva
B

.ρ∫ -mgy0 .v(O)+Tv1(A)+Nv2(A)=0 

where (T,N,0) are the components of the two-dimensional contact force on the wheel applied at the contact point A. 
Now we must use the contact law of friction, by example in the hypothesis of a bilateral contact (y=r)  at the point 
A=(x,y-r,0) of the wheel, implying the geometric constraint y=r  , together with the Coulomb law of friction 
equivalent to the inequality of Duvaut and Lions 
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First the parameters are specified such that wx=wp=wq=0 , satisfying  wiSi=0. It results v(x)=(0,wy,0) so that by taking 
account of the bilateral contact y=r  

mgcosa-N=0 and K& +mgsina x& + )(1 AuNk =0 

dxva
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.ρ∫ +mgy0 v(O)-Nv2(A)+ )(1 AvNk ≥ 0    where  N=mg cosa 
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that is available whatever the parameters ),,( qpx www . After some straightforward calculus, the acceleration term  is 

obtained under the form 
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Taking account of this expression, the differential variational inequality follows  

0)(2)(cos)sin( 2 ≥++++++ qpqqppxx BwAwmrwwrwakmgwamgxm αα&&  

(where qp αα ,  and A,B are given functions) under the compatibility condition pwp+qwq=0. That is the basic relation 
to solve the problem completed naturally by initial conditions on velocities (and positions). 
 

Example 2: Dividing a rigid body. 
 
We consider a rigid body B* divided (on a virtual manner) into two parts B1 and B2. We note B the system of these 
two bodies and S their common boundary. Each part may be viewed as a continuum and the precedent theory may be 
applied to the system B described by parameters q=(qo,q1,…,qn)

T. In fact we introduced the respective motions 
x(a)=T(a)+R(a)X(a)   a=1,2  

where T and R are functions of parameters q.and then the associate virtual displacement   
Naturally, the constraints of the type wiSi=0 must be fulfilled on each part in order to eliminate the Cauchy stress 
tensor in the interior of each of the two bodies B1 and B2. But we must write geometric constraints of continuity on the 
common boundary, viz x(1)=x(2) on the surface S, i.e. 

∆ T=T(2)-T(1)=0  and  ∆ R=R(2)-R(1)=0   
This join is realised by local Cauchy forces along the common boundary S, but, in our hypothesis of displacements, 
resultants and moments only may be introduced to take account of these forces. So, in the Virtual Work Principle 
applied to B, we must introduce  
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where resultant R and moment M are defined on surfaceS. But this quantity is related to Cauchy stress tensor and in 
our framework must be eliminated since they are interior forces of the entire body B*. This condition is satisfied if we 
choose the virtual displacements such that  
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As an example we consider a system of two cylindrical masses B’ (mass m’) and B3 (mass m3) moving without 
friction along the x-axis. They are connecting by a linear-spring (k3) and the mass B’ is connected to the origin by a 
linear-spring (k0). We decomposed the mass B’ into two sub-bodies B1 and B2 of masses m1 and m2. So we are 
considering a multi-body system. Parameters describing the system are the respective coordinates q1,q2 and (q2+q3)  

T1=(q1,0,0), T2=(q2,0,0), T3=(q2+q3,0,0)    
Rigidity constraint of B’ is then ∆ T=T2-T1=0, i.e. q2=q1. So the virtual principle is reduced to 

{-L i+[R(f)+R( ϕ )].T’ i}wi=0      

 [R(f).T’i]w i=[-k 0q1]w1+[k 3q3]w2+[-k 3q3](w2+w3)     
Since =∆T T2-T1=(q2-q1)(1,0,0), we have the constraint (w2-w1=0)  and  for any (w1,w3) 
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and naturally the geometric constraint of rigidity q2=q1. These equations may be obtained by other methods. 

Conclusion. 

The present work has presented a natural link existing between Analytical Dynamics and Continuum Mechanics. The 
key of our scheme was the use of the Virtual Work Principal. Then the elimination of Cauchy stresses introduces 
compatibility relations between virtual coefficients. 
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