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Summary. The nonlinear dynamics of a parametrically excited pendulum is addressed. The proposed analytical approach is conceived
in order to describe the pendulum dynamics beyond the simplified regimes usually considered in literature, where stationarity and
small amplitude oscillations are assumed. By combining complexification and Limiting Phase Trajectory (LPT) concepts the pendulum
dynamics in the neighborhood of the main parametric resonance is investigated. At first, the non-stationary dynamics in the quasi-
linear approximation is considered; afterwards, both stationary and non-stationary regimes are studied without any restriction on the
pendulum oscillation amplitudes. The identification of the bifurcations of the stationary states as well as the large-amplitude corrections
of the stability thresholds emanating from the main parametric resonance are the main results provided by the proposed study.

Introduction and governing equations

Parametrically excited systems represent a class of widely studied problems in nonlinear dynamics [1]. In this context the
parametrically excited pendulum is here considered, the motion of which is described by the following equation

d2q

dt2
+

[
1 +A1 sin

(
ω

ω0
t

)]
sin q = 0, (1)

in which time t̃ = ω0t, ω0 being the pendulum linear natural frequency and the tilde being omitted. We set ω1 = ω
ω0

,
where ω is the frequency of the parametric excitation.

Non-stationary dynamics in the quasi-linear approximation

At first the non-stationary dynamics of the quasi-linear approximation of (1) is addressed. Towards this goal, the series
expansion of the sine function is introduced. By considering that, q = O(ε1/2) and A1 = εA, with ε << 1, equation (1)
can be rewritten as

d2q0
dt2

+ (1 + 4εA sinω1t)q0 + 8εαq30 = 0 (2)

The complex functions ψ = 1√
2
(q̇0+iq0) and ψ∗ = 1√

2
(q̇0−iq0) are now introduced [2]. The main parametric resonance

(1:2) condition is assumed and the change of variable ψ = ϕ(t)eit is considered. After some algebraic manipulations, the
slow time t1 = εt is introduced and the solution, expressed by ϕ(t, t1) = ϕ0 + εϕ1 + ε2ϕ2 . . . , is truncated to the first
order approximation leading to the principal approximation equation in slow time:

dϕ0

dt1
− 3iα|ϕ0|2ϕ0 − e−iβt1Aϕ∗0 = 0, (3)

in which ϕ0 = ϕ0(t1) and ω − 2ω0 = βεω0; thus, β represents the detuning with respect to the main parametric
resonance. By considering the further change of variables ϕ0 = Φ0e

−iβt1 and Φ0 = a(t1)e−iδ(t1), with a(t1), δ(t1) ∈ R,
an Hamiltonian system for the variables a(t1), δ(t1) is obtained, the phase trajectories of which can be represented in the
(a-δ) plane by the equation

βa2 − 3αa4 − 2a2 sin 2δ = const. (4)

in which A = 1 is assumed. In Figure 1 the phase plane stemming from (4) is shown; the stationary points are identified
by the conditions a2 = (β±2)/6α for δ = 3/4π and δ = π/4, respectively. The first type is stable and exists for β ≥ −2,
whereas the second one is unstable and it occurs only for β ≥ 2. The Limiting Phase Trajectory (LPT), encircling all
trajectories, corresponds to the most intensive energy taking off by the pendulum from the parametric excitation energy
source (at given initial conditions) in the main parametric resonance condition. Therefore it can be noticed that, while
near the main parametric resonance (Fig.1a), large LPTs occurs, small LPTs, implying strong localization, arise exiting
from the resonance zone (Fig.1b).

Large-amplitude stationary and non-stationary dynamics

In (1) the complex amplitude of the pendulum oscillations is introduced according to
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2
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dq
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√
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(ψ − ψ∗), dq

dt
=

√
ω1

4
(ψ + ψ∗), (5)

We set now ψ = ϕeiω1/2 t. Then, multiplying by e−iω1/2 t and integrating with respect to the "fast" time t, the condition
providing elimination of resonance (secular) terms with τ = βt is obtained as:
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Figure 1: Phase portrait δ-a in the range −π/4 < δ < 5/4π. (a) β = 0.5, α = 1.0 with stable stationary points at δ = −π/4, 3/4π;
(b) β = 2.5, α = 1.0 with the newborn unstable stationary point at δ = π/4.
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By recalling that ϕ =
√
Xeiτ and that X = ω1

4 Q2, we get
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A

Q
√
ω1
J1(Q) = 0. (7)

On the basis of the above developed stationary dynamics analysis, the non-stationary one [3, 4] can be addressed within
the same analytical framework used in the quasi-linear approximation.
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Figure 2: Relationship between ω1 andQ for varying values of main parametric resonance detuning, β = −0.05, 0.0, 0.05, andA = 0.

Conclusions

In this study we present an analytical framework enabling to describe the nonlinear dynamics of a parametrically ex-
cited pendulum. In particular, by combining complexification and Limiting Phase Trajectory concepts the non-stationary
dynamics for arbitrary pendulum oscillation amplitude can be described. In the quasi-linear approximation, the condi-
tions for the appearance of unstable stationary regimes was determined; for large oscillations, the frequency-amplitude
dependence for parametrically forced pendulum was described. On going work is devoted to complete the non-stationary
analysis for the large amplitude oscillations case.
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