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Summary. We propose an asymptotic integration method for certain class of functional differential systems. This class includes the
delay differential equations with oscillatory decreasing coefficients and variable delays that are close to constants at infinity. Both the
ideas of the centre manifold theory and the averaging method together with some classical asymptotic theorems are used to construct
the asymptotics for solutions. We illustrate the asymptotic integration method by constructing the asymptotics for solutions of two
scalar delay differential equations.

Problem statement

We study the asymptotic integration problem for the functional differential system (FDS)

ẋ = B0xt +G(t, xt) (1)

as t → ∞. Here x ∈ Cm, xt(θ) = x(t + θ) (−τ ≤ θ ≤ 0) denotes the element of Cτ , where Cτ ≡ C
(
[−τ, 0],Cm

)
is the set of all continuous functions defined on [−τ, 0] and acting to Cm. We consider Eq. (1) as perturbation of linear
autonomous system

ẋ = B0xt, (2)

where B0 is a bounded linear functional acting from Cτ to Cm that does not depend on t. Linear bounded functional
G(t, ·), acting from Cτ to Cm, is, in some sense, a small perturbation. The detailed structure of the functional G(t, ·) will
be defined later. The main assumption concerning the unperturbed Eq. (2) is the following. The characteristic equation

det ∆(λ) = 0, ∆(λ) = λI −B0(eλθI),

has N roots (with account of their multiplicities) λ1, . . . , λN with zero real parts and all other roots have negative real
parts. This makes possible to use the ideas of the center manifold theory (see, e.g., [1–4]) for asymptotic integration of
Eq. (1). The asymptotic integration problem for FDS having form (1) was studied by the author in papers [8, 9]. In [8],
the method for asymptotic integration of Eq. (1), where B0 = 0, was proposed. The more general results were obtained
in [9], where the center manifold technique was adapted to construct the asymptotics for solutions of Eq. (1). In this talk
we briefly describe the obtained results and show how we can extend the developed asymptotic integration method to a
wider class of FDS. We demonstrate this method by constructing the asymptotic formulas as t → ∞ for solutions of the
delay differential equation

ẋ = −π
2
x(t− 1) +

a sinωt

tρ
x(t− h) (3)

and solutions of the differential equation with variable delay

ẋ = −π
2
x
(
t− 1 +

a sinωt

tρ

)
. (4)

In Eqs. (3), (4) we assume that a, ω ∈ R\{0}, h ≥ 0 and ρ > 0.

Asymptotic integration method

We begin this section by clarifying the form of the functional G(t, ·) in Eq. (1). Namely, we assume that

G(t, xt) = B(t, xt) +R(t, xt), (5)

whereB(t, ·) andR(t, ·) are linear bounded functionals acting from Cτ to Cm. Besides, for each ϕ ∈ Cτ functionR(·, ϕ)
is Lebesgue measurable for t ≥ t0 and |R(t, ϕ)| ≤ γ(t)‖ϕ‖Cτ , where γ(t) ∈ L1[t0,∞). Moreover, for each infinitely
differentiable function ϕ(θ) the following representation holds:

B(t, ϕ) =

n∑
i=1

vi(t)P
ϕ
i (t) + · · ·+

∑
1≤i1≤···≤ik≤n

vi1(t) · · · vik(t)Pϕi1... ik(t) +Rϕ(t). (6)

HerePϕi1... il(t) are certain vector-valued trigonometric polynomials, depending on functionϕ(θ). Further, v1(t), . . . , vn(t)
are scalar absolute continuous on [t0,∞) functions, satisfying the following conditions:
10. v1(t)→ 0, v2(t)→ 0, . . . , vn(t)→ 0 as t→∞;
20. v̇1(t), v̇2(t), . . . , v̇n(t) ∈ L1[t0,∞);
30. There exists k ∈ N such that vi1(t)vi2(t) · · · vik+1

(t) ∈ L1[t0,∞) for any sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik+1 ≤ n.
Finally, the vector function Rϕ(t) in (6) belongs to L1[t0,∞). Thus, for each infinitely differentiable function ϕ(θ) the
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vector function B(·, ϕ) consists of two terms: the first one has an oscillatory decreasing form as t → ∞ and the second
one is a certain depending on ϕ(θ) absolutely integrable on [t0,∞) function.
The essence of the proposed asymptotic integration method is to construct the center-like manifold (also called critical
manifold) for Eq. (1), (5) which is positively invariant for trajectories of Eq. (1) for t ≥ t∗ and attracts all the trajectories
of Eq. (1) for sufficiently large t. Critical manifold for Eq. (1) can be analytically defined as the set

W(t) =
{
ϕ(θ) ∈ Cτ

∣∣ ϕ(θ) = Φ(θ)u+H(t, θ)u, u ∈ CN
}
.

Here Φ(θ) is (m×N )-matrix whose columns are the generalized eigensolutions of the unperturbed Eq. (2) corresponding
to the eigenvalues λ1, . . . , λN with zero real parts. Further, H(t, θ) is a certain continuous in t ≥ t∗ and θ ∈ [−τ, 0]
(m × N)-matrix such that ‖H(t, ·)‖Cτ → 0 as t → ∞, where ‖H(t, ·)‖Cτ = sup

−τ≤θ≤0
|H(t, θ)| and | · | is some matrix

norm. As a rule we can not define matrix H(t, θ) explicitly. Nevertheless, it can be approximated by a certain explicitly
defined matrix Ĥ(t, θ) up to the term Z(t, θ) such that ‖Z(t, ·)‖Cτ → 0 as t → ∞ and ‖Z(t, ·)‖Cτ ∈ L1[t∗,∞). The
main properties of critical manifoldW(t) and the method for its approximate construction are discussed in paper [9].
Evidently,W(t) is N -dimensional linear space. It turns out that, due to the positive invariance ofW(t), the dynamics of
solutions of Eq. (1) lying on this manifold can be described by the N -dimensional linear ordinary differential system

u̇ =
[
D + Ψ(0)G

(
t,Φ(θ) +H(t, θ)

)]
u, t ≥ T. (7)

Here D is a certain (N × N)-matrix whose eigenvalues are λ1, . . . , λN and Ψ(0) is a certain (N ×m)-matrix coming
from decomposition of Cτ (see, e.g., [6]). System (7) is referred to as a projection of Eq. (1) on critical manifoldW(t)
or, simply, as a system on critical manifold. SinceW(t) is an attractive manifold it can be shown that for each solution
x(t) of Eq. (1) the following asymptotic formula holds as t→∞: xt(θ) = Φ(θ)uH(t) +H(t, θ)uH(t) +O

(
e−βt

)
. Here

uH(t) is a certain solution of Eq. (7) and β > 0 is a certain real number. Therefore, to obtain the asymptotics for all
solutions of Eq. (1) we should construct the asymptotic formulas for the fundamental solutions u(1)(t), . . . , u(N)(t) of a
system on critical manifold (7). This can be done by using the averaging technique from [7] together with the well-known
Levinson’s theorem (see, e.g., [5]). Finally, we obtain the following asymptotic representation for solutions of Eq. (1):

x(t) = xt(0) =
(
Φ(0) +H(t, 0)

) N∑
i=1

ciu
(i)(t) +O

(
e−βt

)
, t→∞,

where c1, . . . , cN are arbitrary complex constants and β > 0 is a certain real number.

Conclusion

We use the described above method to construct the asymptotics for solutions of Eq. (3) and Eq. (4) as t→∞. If ρ > 1,
the dynamics of solutions of Eq. (3) is the same as the dynamics of solutions of Eq. (4). The asymptotics of solutions is
described in this case by the formula

x(t) = c1
(
1 + o(1)

)
ei
π
2 t + c2

(
1 + o(1)

)
e−iπ2 t +O

(
e−βt

)
,

where c1, c2 are arbitrary complex constants and β > 0 is a certain real number. If 1/2 < ρ ≤ 1, the dynamics of
solutions of Eqs. (3), (4), being qualitatively the same, have some quantitative differences. If ρ ≤ 1/2, the dynamics of
solutions of Eq. (3) and the dynamics of solutions of (4) as t → ∞ significantly differ. These are the results that will be
discussed in the talk.
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