
ENOC 2017, June 25-30, 2017, Budapest, Hungary

Robust Dynamic Vehicle Routing for On-Demand Systems under Light Load
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Summary. This paper studies a novel variant of the dynamic vehicle routing (DVR) problem for on-demand systems. The objective
of this paper is to develop an algorithm to solve this problem and find a configuration and induced partition for the vehicles that is
robust to unbounded service delays that arise due to exogenous factors (e.g., closed roads due to construction, sudden accidents). The
problem is formulated using stochastic optimization, which is solved using a distributed gradient algorithm that is proven to converge.
We evaluate our approach using numerical simulations. Finally, we demonstrate the effectiveness of our proposed method for vehicle
travel on roads using the Open Street Map (OSM) dataset.

Introduction

In this paper, we study the large-scale multi-vehicle, Dynamic Vehicle Routing (DVR) problem (see [1–5] and the refer-
ences therein). In its simplest from, the objective of DVR problem is to find a policy to service demands over an infinite
horizon that minimizes the expected service times of demands. Existing methods to address this problem are unable to
accommodate exogenous uncertainty which may arise due to vehicle break down, road blockages or accidents. The main
focus of our paper is in presenting a general framework for the design of a DVR policy under light load1 that is robust
to unexpected delays due the above mentioned exogenous factors. Our problem is formulated as a minimization of the
mean worst-case wait-time of demands. Our proposed algorithm is an iterative gradient descent approach and is proven
to locally converge to multi-median locations under a general space partitioning scheme.
Our approach is evaluated using numerical simulations, and the trade-offs of our method are discussed. We demonstrate
the effectiveness of our proposed method using the Open Street Map (OSM) [6], which we believe to be of independent
interest.

Notation and Problem Definition

Consider a compact, convex set Q ⊂ <d and a md × 1 vector x = [x>1 , . . . ,x
>
m]> of m distinct points corresponding

to vehicle locations where xi ∈ <d. It will often be convenient to refer x to the set of positions. Let I = (1, . . . ,m) be
the index set for m vehicles. Suppose demands for service arrive as a spatio-temporal Poisson process2 with rate λ > 0,
and their locations, each represented as a random vector q, are independent and drawn from Q by the distribution φ. We
are interested in obtaining vehicle configuration which minimize the expected wait time for demands in the light load
(λ→ 0). If we assume further that the wait-time for each demand is proportional to the distance from the nearest vehicle,
and that vehicles operate at constant velocity with an infinite amount of fuel, the problem becomes:

min
x

{
H(x, Q) := E

[
min
i∈I
‖q− xi‖

]}
, (1)

where H(x, Q) is the expected distance between a point drawn from a distribution φ on Q and the nearest point in
x. For the light load condition, there is an optimal DVR policy, namely, m-Stochastic Queue Median (mSQM) [1]
where each demand is assigned to the nearest m-median locations—the solution to (1)—and every vehicle services each
demand in first-come, first-served (FCFS) order and returns back to its m-median location. Now consider a On-Demand
system under light traffic where m vehicles execute mSQM policy, and some vehicles become unavailable indefinitely for
servicing demand due to exogenous factors. In this case, the system can become unstable, in the sense that the wait-times
for some demands can be unbounded, due to the unavailabilities. We propose a robust method which guarantees bounded
system time under adversarial scenarios. The aim is to minimize the expected worst-case wait-time for the case when up
to (k − 1)-vehicles are unavailable. Accordingly, we define our problem as

min
x

{
Hk(x,Q) := E

[
min
S⊂I:
|S|=k

max
i∈S
‖q− xi‖

]}
. (?)

Note that if k = 1, then (?) becomes identical to the non-robust formulation (1), and solution to (?) provides relative
robustness gain as k ranges from 1 to m.

Robust DVR Policy Under Light Load

The Optimal Partitioning
1In this limiting regime, traffic intensity tends to 0, the arrival rate of demands tends to 0, and there is no outstanding demand for each vehicle [1].
2A Poisson process is the de facto standard model for DVR problems with large, independent demands [1, 4]
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We first consider the requirements for the partition of Q to be a solution for the minimax problem inside (?). Consider
a vector x of m distinct points in Q ⊆ <d. In [7], authors define Voronoi diagram of order-k (bounded by Q) as the
collection of regions that partitions Q where each region is associated with k nearest points in x. The following theorem
characterizes the optimal partitioning policy for (?).

Theorem 1. The optimal partition for (?) is the Voronoi diagram of order-k.

The proof is given in the Appendix. For convenience of presentation, we can define an invertible, set-to-set map Gk :
2x → 2V, which maps a subset of generators of x to a collection of their associated order-k Voronoi polytopes. For
example; Gk({xi}) = {V (y) ∈ V | xi ∈ y} is read as a collection of order-k Voronoi polytopes where each one of the
polytopes has xi as one of its generators. If V is the Voronoi partition of order-k given x, then the following result is an
immediate consequence of Theorem 1:

E

[
min
S⊂I:
|S|=k

max
i∈S
‖q− xi‖

]
=
∑
V ∈V

∫
V

max
i∈I:

xi∈G
−1
k

(V )

‖q− xi‖φ(q)dq.

Gradient Algorithm
The discrete version of (1) is easily seen to be NP-hard via reduction from m-median (weber) problem3, which suggests
that there is no efficient algorithm capable of finding the solution to (?). We can develop a provably convergent gradient
descent algorithm to obtain a local solution of (?). For a given set of points x, an iterative algorithm, namely Algorithm 1
is presented as follows:

Algorithm 1 (Gradient Algorithm). Initialize l← 0, yl ← x. At each iteration:

Step 1. Apply gradient descent along all m directions, i.e., for each i ∈ I:

yl
i ← yl

i − αl
i ×

∂Hk([· · · ,yl>
i , · · · ]>, Q)
∂yl

i

,

where αl
i is a step size. One possible choice for αl

i is the inverse of the Hessian (Newton’s method).

Step 2. Terminate and return x? ← yl if a stop criterion is satisfied or a prespecified number of iterations is completed; otherwise
yl+1 ← yl, l← l + 1 and repeat Step 1

Algorithm 1 generates a sequence (yl = {yl1, . . . ,ylm})∞l=0 from y0 := x ∈ Qm ⊂ (<d)m. The ith partial derivative
term is given by

∂Hk([· · · ,x>i , · · · ]>, Q)
∂xi

= −
∑

V ∈Gk({xi})\Gk−1({xi})

∫
V

1

‖q− xi‖
(q− xi)φ(q)dq

where for the sake of notation we let G0(·) = ∅. More details about the derivation can be found in the Appendix (see
Lemma 1 and its complete proof). From the standpoint of convergence, we have the following.

Theorem 2. Algorithm 1 is convergent.

The theorem can be proven by means of a Lypunov-like method. The proof of this theorem is rather straightforward and
is omitted. Let x? be the point set that the trajectory generated by our gradient algorithm from x converges to. We can
design a robust version of mSQM DVR policy [1], namely Algorithm 2, as follows:

Algorithm 2 (A Robust mSQM policy). At each time step, given x

Step 1. Obtain an order-k Voronoi tesellation ofQ
Step 2. Execute Algorithm 1 to obtain x?

Step 3. For each i ∈ I , assign demands generated in Gk({xi}) to the ith vehicle

Step 4. For each i ∈ I , service outstanding demandsa in FCFS order and return back to x?

Step 5. Update x, i.e., x← x?
i .

aTie-break-rule: the (available) vehicle nearest to the demand services the demand. If two or more vehicles are available and have identical
distance to a demand, the tie may be broken arbitrarily.

3The weber problem is known to be NP-Hard [8].
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Figure 1: Initial configuration of 10 vehicles in Ann Arbor

If x? solves (?) for along every time step, then using a similar argument as was used in [1], it is straightforward to show
that for an arbitrary value of k, Algorithm 2 is asymptotically optimal in the light load.

Numerical Simulations

For our simulations, we retrieved the road map of Ann Arbor from Open Street Maps (OSM) [6] database and represent
the road map as an undirected graph, G(V, E). Fig. 1 shows 10 indexed vehicles, initially deployed in the city. For
the 1st round of simulations, we assume that each demand arrives in G and the vehicles are not confined to move in G.
Fig. 2 compares the configuration/induced partition of 10 vehicles after 40 iterations of gradient algorithm with k = 1
(state-of-the-art method [1]) and k = 2 (our robust approach). Fig. 3 compares the cost changes during iterations with
k = 1 and k = 2, if the 1st vehicle is unavailable, where we varied the value of σ, namely, an expected service delay
(an unmodeled cost) incurred due to the 1st vehicle’s unavailability. The figure illustrates that our method with k = 2 is
robust to service delay due to unavailability of a single vehicle.
Next, we consider the case when vehicles are confined to travel in G. Two conspicuous problems arise if the constraint
is enforced; 1) calculating the gradient becomes intractable (this is in large part due to the distance terms found in (?)).
We assume as an approximation that minimum distance between any two points on the G is proportional to the Euclidean
distance between them. 2) Since each vehicle must lie on G all the time, unless the algorithm converges to m-points on
the road map, in general there is no feasible solution. Thus we consider nearest neighbor approximation, namely, to find
x̂ = argminx :xi∈B(x?

i ,δ)∩E
Hk where δ > 0. Fig. 4 (left) shows one-time deployment of 10 vehicles over G with k = 2,

and Fig. 4 (right) displays 9th vehicle’s path in G in response to a demand generated at the square point, when 1st vehicle
is unavailable. In this case, the 9th vehicle arrives to the demand instead in roughly 8 minutes (GPS ranges shown in Fig.
4 for both coordinates are approximately 9.66 miles, and each vehicle travels at a constant speed 30mph). The shortest
paths were determined by Dijkstra’s algorithm [9].
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Figure 2: Vehicles’ locations, induced partition after 40 iterations
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Figure 3: Mean wait time with k = 1, k = 2 for different service delay values when the 1st vehicle is unavailable

Figure 4: left: one-time deployment over G, right: response to a demand when 1st vehicle is unavailable where bold lines show the
partition

Discussion

This paper presents a novel average-worst-case framework for the assignment of depots for DVR problem in light load.
Our method becomes unstable as the load increases, and obtaining the optimal solution requires a central entity. Future
work will involve full consideration of various traffics conditions including congestion effects. In addition, it should be of
independent interest to efficiently adapt DVR policies to work under a road map constraint.
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Appendix: Proofs

Proof of Theorem 1. Consider an arbitrary partition W = (W1, . . . ,Wl) ofQ into l regions where each regionWi ⊂ Q is
assigned to k generators, i.e., k number of points from x. Then, by the property of space partition, Wi∩Wj = ∅ for every
pair i, j ∈ {1, . . . , l} with i 6= j, and ∪iWi = Q. Consider a Voronoi partition of order k, namely V = (V1, . . . , Vm), a
partition of Q into m regions, where each region is associated to k points. We note here that given Q and a configuration
x ∈ Qm, the Voronoi diagram of order k is an unique tessellation ofQ (for details see, e.g., [10]). Recalling the definition
of the order-k Voronoi tessellation from [10], it follows that

V (z) = {q | max
p∈z
‖q− p‖ ≤ min

s∈x\z
‖q− s‖}, (2)

where V (z) is read as a Voronoi polytope having z as its set of generators. To prove the theorem, we will show that for
each point q ∈ Q, there is z satisfying (2) such that the following inequality holds for all y ⊂ x with |y| = k

max
p∈z
‖q− p‖ ≤ max

r∈y
‖q− r‖ , (3)

where y is necessarily associated with a region from the arbitrary partition W of Q, i.e., for the given partition W there
exists j ∈ {1, . . . , l} such that y is associated with Wj ∈W. We address all three possible cases:

1) y = z: The equality from (3) holds trivially.

2) y ∩ z = ∅: The inequality follows from (3) trivially from (2).

3) y ∩ z 6= ∅: This case needs further analysis. The equation (2) implies that for all point s ∈ x \ z,

max
p∈z
‖q− p‖ ≤ ‖q− s‖ ,

such that
max
p∈z
‖q− p‖ ≤ min

v∈y\z
‖q− v‖ . (4)

Using the property of max operator, we have

max
w∈z∩y

‖q−w‖ ≤ max
p∈z
‖q− p‖ . (5)

Combining (4) and (5), gives

max
p∈z
‖q− p‖ ≤ max

{
min
v∈y\z

‖q− v‖ , max
w∈z∩y

‖q−w‖
}
≤ max

r∈y
‖q− r‖ .

Thus,
z = arg min

y⊂x,|y|=k
max
r∈y
‖q− r‖ . (6)

Hence, given an arbitrary partition W = (W1, . . . ,Wl) of Q, for each q ∈Wj where j ∈ {1, . . . , l}, there is a unique set
of k points z ⊂ x and its associated order-k Voronoi region V (z) ∈ V such that (6) holds. Since this property holds for
any configuration x ∈ Qm, V is the optimal partition for (?).

Lemma 1. For each i ∈ I , k ∈ I ,

∂Hk([· · · ,xi, · · · ]>, Q)
∂xi

= −
∫
Gk({xi})\Gk−1({xi})

1

‖q− xi‖
(q− xi)φ(q)dq. (7)

The proof of Lemma 1 depends on the following two propositions.

Proposition 1. For each k ∈ I
{Gk({xi}) \Gk−1({xi})}mi=1 (8)

is a partition of Q.
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Proof of Proposition 1. We note without proof [10] that W = (W1, . . . ,Wl) is a partition of Q ⊆ <d if and only if,
Wj ⊆ Q for all j ∈ {1, . . . , l}, and

l∑
i=1

∫
Wi

dq =

∫
Q
dq. (9)

Also, it is routine to verify—using the definition of the order-k Voronoi tessellation (2)—that for every k ∈ I ,
m∑
i=1

∫
Gk({xi})

dq = k ×
∫
Q
dq. (10)

First, we show that for each k ∈ I , and i ∈ I ,

Gk−1({xi}) ⊆ Gk({xi}) (11)

If q ∈ Gk−1({xi}), then again by the definition of the order-k Voronoi tessellation (2),

‖q− xi‖ ≤ max
xj∈G−1

k−1({q})
‖q− xj‖ ≤ min

xl∈x\G−1
k−1({q})

‖q− xl‖

By using the properties of min, max operators, we have

‖q− xi‖ ≤ max
xj∈G−1

k−1({q})
‖q− xj‖ ≤ max

xj∈G−1
k ({q})

‖q− xj‖ ≤ min
xl∈x\G−1

k ({q})
‖q− xl‖ ≤ min

xl∈x\G−1
k−1({q})

‖q− xl‖ .

Hence, q ∈ Gk(xi), and this implies (11). By using the spatial relationships (10) and (11), we have
m∑
i=1

∫
Gk({xi})

dq =

m∑
i=1

∫
Gk(}xi})\Gk−1({xi})

dq+

∫
Gk−1({xi})︸ ︷︷ ︸

(k−1)×
∫
Q dq

dq = k ×
∫
Q
dq.

Hence,
∑m
i=1

∫
Gk({xi})\Gk−1({xi}) dq =

∫
Q dq. By using the property of the space partitioning (9), we can conclude

that (8) is a partition of Q.

Proposition 2. Consider
U = {q ∈ Q | q ∈ Gk(xi) \Gk−1({xi})}. (12)

Then, for each q ∈ U , xi = argmaxxj∈G−1
k (U) ‖q− xj‖ .

Proof of Proposition 2. Suppose towards contradiction that there exists xl 6= xi and q ∈ U such that

xj = arg max
xj∈G−1

k (U)
‖q− xj‖ . (13)

Then, according to the definition of the order-k Voronoi tessellation (2), (13) implies that xl is exactly the kth nearest
generator in distance to q; however, it is immediate from the definition of the set U from (12) that xi is the k nearest
generator to q. Hence xl = xi, and a contradiction is obtained.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Recall that

E

[
min
i∈I

max
i∈S:

S⊂I, |S|=k

‖q− xi‖

]
=
∑
V ∈V

∫
V

max
i∈I:

xi∈G
−1
k

(V )

‖q− xi‖φ(q)dq. (14)

Using Proposition 1 and 2, we can simplify the right-hand side of (14) as follows:

Hk(x, Q) =
∑
V ∈V

∫
V

max
i∈I:

xi∈G
−1
k

(V )

‖q− xi‖φ(q)dq [by Proposition 1]

=

m∑
i=1

∫
Gk({xi})\Gk−1({xi})

(
max

xj∈G−1
k (Gk({xi})\Gk−1({xi}))

‖q− xj‖

)
φ(q)dq [by Proposition 2]

=

m∑
i=1

∫
Gk({xi})\Gk−1({xi})

‖q− xi‖φ(q)dq.

After a simple differentiation with respect to each coordinate vector xi, we have for each k ∈ I , i ∈ I:

∂Hk([· · · ,xi, · · · ]>, Q)
∂xi

= −
∫
Gk({xi})\Gk−1({xi})

1

‖q− xi‖
(q− xi)φ(q)dq.
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