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Summary. Our goal in this work is to investigate existence, stabilityand bifurcations of periodic orbits in a strongly non-linear non-
ideal problem. We have rigorously obtained existence of periodic orbits as well as a couple of inequalities which governs their stability.
Moreover, in a special case turns out that the increasing of dissipation leads to instability of the periodic orbits. Such phenomenon has
been reported in the literature mainly for linear systems.This is known as dissipation-induced instability.

Introduction

In the literature on non-ideal problems, see for example [1], only weakly non-linear problems are approached. A rigorous
approach of the dynamics of a weakly non-linear non-ideal problem was performed in [3]. In that paper existence,
stability and bifurcations of periodic orbits, which leadsto Sommerfeld Effect, were investigated. Our goal in this work
is to investigate the same questions in a strongly non-linear non-ideal problem. We have rigorously obtained existenceof
periodic orbits as well as a couple of inequalities which governs their stability. In a quite particular case of our results, in
fact in an ideal problem, it was proved that the increasing ofdissipation leads to instability of the periodic orbits. Such
phenomenon has been reported in the literature mainly for linear systems, see [4]. This is known as dissipation-induced
instability. It was necessary to do massive numerical and symbolic computations, which were performed by the CAS
Maxima, http://maxima.sourceforge.net/.

The Centrifugal Vibrator
We consider a mechanical system excited by aDC motor with limited supply power, which base is supported on aspring.
Besides, theDC motor rotates a small massm, Figure 1. This mechanism is known as centrifugal vibrator.The
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Figure 1: Centrifugal Vibrator

mathematical model is given by the following system:
{

m1ẍ+ βẋ + cx+ dx3 = mrϕ̇2 cosϕ+mrϕ̈ sinϕ,
Iϕ̈ = M(ϕ̇) +mrẍ sinϕ+mgr sinϕ.

(1)

For details of this model see [3]. The functionM (·) is the difference between the driving torque of the source ofenergy
(motor)L (ϕ̇) and the resistive torque applied to the rotor. Such functionM (·) is obtained from experiments. We can
rewrite the equations of motion(1) as a system of first order. Takeω2 = c

m1

, a2 = − β
m1

, a3 = d
m1

, a4 = mr
m1

, a5 = mr
I

,

a6 = mgr
I

, M1(ϕ̇) =
M(ϕ̇)

I
. Now, let us introduce a small parameterǫ in these parameters. Let us replace the parameters

ai, i 6= 3 andω by ǫ ai, i 6= 3 andǫ ω respectively. Moreover, let us substituteM1(ϕ̇) by ǫM1(ϕ̇). Then by making
x1 = x, x2 = ẋ, x3 = ϕ, x4 = ϕ̇ in (1), it is obtained a fourth order system which unperturbed partinvolves the term
a3x

3
1. From now on jacobian elliptic functions will be used in the next steps. The jacobian cosine with modulus1/

√
2 is

denoted bycn
(

t, 1/
√
2
)

and its period byk0. By takingx1 = C cn
(

D, 1√
2

)

, x2 =
√
a3 C

2 cn′
(

D, 1√
2

)

in this fourth

order sytem, applying the usual reduction process in the obtained equation and using the following change of variables
D (x3) = D1 (x3)− k0 x3

2π
in the reduced system,one obtains
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whereu02 = u02 (C, x4) =

2π
√
a3 C+k0 x4

2π x4
.
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Existence of Periodic Orbits

Our theorem of existence is the following one. Let us assume that the following conditions are valid. The next inequality
holds and there is
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a2 6= 0, (5)

wherek6 =
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du andF (s, a, b) has a huge expression and it will

be omitted here. Then (2) has2π periodic solutions for allǫ adequately small. This result is rigorously proved by using
the Regular Perturbation Theory and the Poincaré Method. A good reference is [2].

Stability

Let h (s, ǫ) be the2π periodic solution obtained in the foregoing section. By using the Regular Perturbation Theory one
obtainsh (s, ǫ) = h0 (s) + h1 (s) ǫ + O

(

ǫ2
)

whereh0, h1 as well as the remainderO
(

ǫ2
)

are2π periodic mappings
which are explicitly computed. The symbolic computations involved in are really big ones. The linearization of (2)
at h yields a2π periodic time dependent linear systemy′ (s) = A (s, ǫ) y (s), whereA is a 3 × 3 matrix. Let us
denote the principal matrix of this system byN (s, ǫ) whereN (0, ǫ) = identity matrix . The monodromy matrix is
given byN (ǫ) = M (2π, ǫ). Again, by using the Regular Perturbation Theory in this system, one obtainsN (s, ǫ) =
N0 (s) +N1 (s) ǫ + O

(

ǫ2
)

. The symbolic computations involved in the obtaining ofN0, N1 are big ones too. Consider

p (ǫ, z) the characteristic polynomial ofN . It can be proved that
p(ǫ z+1,ǫ2)

ǫ3
= z3 + c2 (ǫ) z

2 + c1 (ǫ) z + c1 (ǫ). The
Implicit Function Theorem can be applied in the right hand side of the last equation. One obtains that the rootsr1, r2, r3

of p are given byr1 (ǫ) = 1 + d1ǫ + O
(
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√
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, wheree1, e2 are real numbers.

And, r3 (ǫ) is the complex conjugate ofr2 (ǫ). All coeficients are explicitly computed. Ifd1 < 0 and2e2 + e21 < 0 then
|r1 (ǫ) | < 1 and|r2 (ǫ) | < 1 for ǫ << 1. It is well known this leads to the stability of the periodic orbit. Otherwise, if
d1 > 0 or 2e2 + e21 > 0 the the periodic orbit is unstable.

Dissipation-induced instability in the ideal case

Now let us to investigate a quite special case whenM1 (·) = C0, C0 constant. This leads to an ideal mechanical system.
In view of (3) there is an upper bound for the dissipation|a2| which will be denoted byσ. From the results in the last
section, it can be proved if the parametersa3, a4, a5 are fixed with1 < a3 < 3, take the applied torqueC0 adequately
big then if |a2| is small then the periodic orbit is stable. If|a2| is nearσ then the periodic orbit is unstable. This means
the increasing of dissipation leads to an unstable periodicorbit. Such kind of phenomenon is known in the literature as
dissipation-induced instability, for details see [4]. It must be emphazised the examples in given in [4] are linear ones.

Conclusions and Acknowledgements

By using a special change of variables, involving elliptic functions, in a strongly non-linear non-ideal problem questions
on existence, stability and bifurcation can be efficiently approached. Particularly, the stability of the orbits are controlled
by two inequalities. In a particular case, which is an ideal problem,it was found out the phenomenon of dissipation-
induced instability. The next steps will be to investigate the ocurrence of such phenomenon, as well as,of the Sommerfeld
Effect in other strongly non-linear systems.
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