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Damped Hill’s Equation and Its Application to Attenuate Vibrations
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Summary. We define a class of linear Hamiltonian systems with dissipation whereby we develop the properties of µ-Symplectic
and γ-Hamiltonian matrices. Due to the symmetry property, we can reduce the 2n dimensional to the n-dimensional linear system.
The damped Hill’s equation with n DOF is written as the new class of system, then we prove that monodromy matrix associated to
the system is µ-Symplectic. With this new tool, we describe a method to attenuate vibration in a mechanical system with 2-DOF by
parametric excitation.

Introduction

In mechanical systems there is always a small amount of dissipation; however, the most classical works, [1, 2] do not
consider the linear Hamiltonian systems with dissipation, from now on we name them γ-Hamiltonian systems. It is also a
well-known fact, that it is possible to increase the dissipation in a mechanical system by introducing parametric excitation
[3], regarding control theory, this is understood as an open loop control technique eliminating the expensive measurements
of the state. Through the averaging and perturbations methods is concluded that the maximal attenuation occurs close to
the critical frequencies [3, 4]; however, these results are correct only for small parameters. Using the properties of the
γ-Hamiltonian systems we can obtain the conditions for the attenuation occurrences for any parameter, eliminating the
restrictive condition of small parameters approximation.
In the first and second section of this paper are written the properties of the µ-Symplectic and γ-Hamiltonian matrices.
Then we prove that for any γ-Hamiltonian system, the transition state matrix is µ-Symplectic. The damped Hill’s equation
is described as γ-Hamiltonian periodic system and its monodromy matrix as µ-Symplectic. The Floquet factorization
make possible to transform the γ-Hamiltonian periodic system into time-invariant γ-Hamiltonian system. Finally, the
presented method makes possible to find the relations where the attenuation of mechanical systems occurs, the results are
presented for a mechanical system with 2-DOF.

γ-Hamiltonian Matrices

Let be

J =

[
0 In
−In 0

]
an real square matrix where In is the n× n identity matrix, it is clear that JT = −J = J−1, J2 = −I2n, det (J) = 1.

Definition 1 The matrix Ã ∈ R2n×2n is said Hamiltonian if and only if:

ÃTJ + JÃ = 0

Let be PÃ (s) the characteristic polynomial of Ã, then PÃ (s), is an even polynomial, that is to say, it only has even
powers, thus the eigenvalues of Ã are symmetric with respect to the imaginary axis i.e. if s is an eigenvalue of Ã,
s ∈ σ

(
Ã
)

then −s is an eigenvalue too −s ∈ σ
(
Ã
)

. Since the matrix Ã is real, s̄ and −s̄ are eigenvalues as well. Then
the eigenvalues of the Hamiltonian matrix are placed symmetrically with respect to both real and imaginary axis, thus the
eigenvalues: appear in real pairs, purely imaginary pairs or complex quadruples [5, 1].

Definition 2 The matrix A ∈ R2n×2n is γ−Hamiltonian if and only if for some γ ≤ 0

ATJ + JA = 2γJ (1)

From (1) it is clear that (A+ γI2n)
T
J + J(A + γI2n) = 0 then A is γ-Hamiltonian if and only if (A+ γI2n) is a

Hamiltonian matrix. Then if s + γ ∈ σ (A) ⇒ s ∈ σ (A+ γI2n), but (A+ γI2n) is an Hamiltonian matrix, then
−s ∈ σ (A+ γI2n)⇒ −s+ γ ∈ σ (A), the following lemma states this idea.

Lemma 3 If γ + s is an eigenvalue of A γ-Hamiltonian matrix then also γ − s is an eigenvalue of A:

(γ + s) ∈ σ (A)⇔ (γ − s) ∈ σ (A)

Proof 4 From definition (1) AT = 2γI2n − JAJ−1 then

PA (s+ γ) = det
[
(s+ γ) I2n −AT

]
= det

[
(s+ γ) I2n −

(
2γI2n − JAJ−1

)]
= det

[
(s− γ) I2n + JAJ−1

]
= (−1)

2n
det [J ] det [− (s− γ) I2n −A] det

[
J−1

]
= det [(γ − s) I2n −A] = PA (γ − s)�
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Figure 1: Eigenvalues of µ-Symplectic matrix and γ− Hamiltonian matrix

The lemma states that the eigenvalues of A are symmetric with respect the vertical line Re(s) = γ in the complex plane,
since the matrix A is real s + γ and s − γ are eigenvalues as well. Then the eigenvalues of γ-Hamiltonian matrix are
placed: i) in quadruples symmetrically with respect the real axis and the line Re(s) = γ, ii) purely imaginary pairs on
the line Re(s) = γ and symmetric with the real axis iii) real pairs symmetric with the line Re(s) = γ. See Fig. 1.

Remark 5 The characteristic polynomial of A ∈ R2n×2n PA (s) depends of n coefficients only.

Proof 6 The proof of the last remark is constructive, from definition (1) AT = 2γI − JAJ−1 thus:
PA (s) = det

(
sI2n −

(
2γI − JAJ−1

))
= det

(
(s− 2γ) I2n + JAJ−1

)
= det (J) det ((s− 2γ) I2n +A) det

(
J−1

)
= det ((s− 2γ) I2n +A) = PL (2γ − s)
then

PA (s) = s2n + a2n−1s
2n−1 + ...a1s+ a0 = (2γ − s)2n + a2n−1 (2γ − s)2n−1

+ ...a1 (2γ − s) + a0 = PA (2γ − s)

for n = 1
a1 = −2γ a0 = a0

n = 2
a3 = −4γ a2 = a2 a1 = 8γ3 − 2γa2 a0 = a0

n = 3

a5 = −6γ a4 = a4 a3 = 40γ3 − 4γa4 a2 = a2 a1 = −96γ5 + 8γ3a4 − 2γa2 a0 = a0

n = 4

a7 = −8γ a6 = a6 a5 = 112γ3 − 6γa6 a4 = a4

a3 = −896γ5 + 40γ3a6 − 4γa4 a2 = a2 a1 = 2176γ7 − 96γ5a6 + 8γ3a4 − 2γa2 a0 = a0

... �

Then the coefficients of 2n degree characteristic polynomial PA (s) can be rewritten such that PA (s) depends of n
coefficients only. Of course if γ = 0 the characteristic polynomial of Hamiltonian matrix is obtained. Making the
substitution φ = s − γ reduces PA (s) to an even polynomial, for instance: if n = 1 → PA (φ) = φ2 − γ2 + a0 and
n = 2→ PA (φ) = φ4 +

(
a2 − 6γ2

)
φ2 + 5γ4 − a2γ2 + a0

µ-Symplectic Matrices

Definition 7 M̃ ∈ R2n×2n is called Symplectic if

M̃TJM̃ = J

is satisfied.
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The determinant of any Symplectic matrix is one, det
(
M̃
)

= 1 [1], thus M̃ is not singular. If A,B ∈ R2n×2n are

Symplectic then AB is Symplectic too, (AB)
T
J (AB) = BTATJ (AB) = BTJB = J , and from the definition

M̃−1 = J−1M̃TJ is also Symplectic
(
J−1M̃TJ

)T
J
(
J−1M̃TJ

)
= JT M̃JM̃TJ = JT M̃

(
M̃−1M̃

)
JM̃TJ =

JT M̃JM̃T︸ ︷︷ ︸
J

J = JTJJ = J . Therefore the set of Symplectic matrices from a Group.

Lemma 8 The characteristic polynomial of Symplectic matrix PM̃ (λ) can be expressed as:

PM̃ (λ) = λ2nPM̃

(
1

λ

)
Proof 9

PM̃ (λ) = det
[
λI2n − M̃T

]
= det

[
λI2n − JM̃−1J−1

]
= (−1)

2n
det
[
M−1

]
det

[(
I2n
λ
−M

)
λ

]
= λ2n det

[
I2n
λ
−M

]
= λ2nPM̃ (λ) �

The last proof states that PM̃ (λ) = λ2n + m̃2n−1λ
2n−1 + ...+ m̃1λ+ 1 is a reciprocal polynomial, this is equivalent to

say that the coefficients satisfies the relation PM̃ (λ) are m̃k = m̃2n.−k. Since M̃ is real if λ is an eigenvalue then λ̄, λ−1

and λ̄−1 are as well eigenvalues. Furthermore, the eigenvalues are symmetric with respect to the unit circle.
An important characteristic of Symplectic matrices is the symmetry, due to the symmetry the 2n degree characteristic
polynomial PM̃ (λ) is reduced to n degree auxiliary polynomial (reduced polynomial) [6]. Let be

ρ = λ+
1

λ
(2)

the Howard transformation, thus
λ2 − ρλ+ 1 = 0

if n = 2
PM̃ (λ) = λ4 + m̃3λ

3 + m̃3λ
2 + aλ+ 1 =⇒ PM̃ (ρ) = ρ2 + m̃3ρ+ m̃2 − 2

The next definitions and lemmas are a generalization of the Symplectic matrices [1, 6].

Definition 10 M ∈ R2n×2n is called µ-Symplectic matrix if the equation:

MTJM = µJ

is satisfied for µ ∈ (0, 1]

Lemma 11 The determinant of a M ∈ R2n×2n µ-Symplectic matrix is µn.

Proof 12 det
[
MTJM

]
= det

[
MT

]
det [J ] det [M ] = det [µJ ] = µ2n → (det [M ])

2
= µ2n �

Lemma 13 The characteristic polynomial of µ-Symplectic matrix PM (λ) can be expressed as:

PM

(µ
λ

)
=

µn

λ2n
P (λ) (3)

Proof 14

PM (λ) = det
[
λI2n −MT

]
= det

[
λI2n − µJM−1J−1

]
= det

[
λ

µ
M − I2n

]
det
(
µM−1

)
= µn det

[(
−λ
µ

)(µ
λ
I2n −M

)]
= µn

(
−λ
µ

)2n

det
[µ
λ
I2n −M

]
=
λ2n

µn
PM

(µ
λ

)
�

Remark 15 If M ∈ R2n×2n is µ-Symplectic , then λ ∈ σ(M) ⇒
(
µ
λ

)
∈ σ(M). There are n pairs of eigenvalues and

det [M ] = µn then if all eigenvalues have the same magnitude µn =
2n∏
i=1

|λ| =
2n∏
i=1

∣∣reθi∣∣ = r2n → r =
√
µ thus we can

say that the eigenvalues of M are symmetric with respect to the circle of radius r =
√
µ and this fact is independent of n.

See Fig. 1.
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Let be PM (λ) = m2nλ
2n + ...m1λ+m0 the characteristic polynomial of M , then from (3)

λ2nµ−nPM

(µ
λ

)
= P (λ)

λ2nµ−n
[
m2n

(µ
λ

)2n
+ ...m1

(µ
λ

)
+ a0

]
= m2nλ

2n + ...m1λ+m0

the following relations are satisfied
µn = m0

µn−1m2n−1 = m1

µn−2m2n−2 = m2

...
µ−(n−2)m2 = m2n−2

µ−(n−1)m1 = m2n−1

µ−nm0 = m2n

(4)

hence the characteristic polynomial PM (λ) depends of n coefficients only, for instance if n = 2

PM (λ) = λ4 +m3λ
3 +m2λ

2 +m3µλ+ µ2 (5)

Remark 16 Applying transformation
ρ = λ+ µ

λ (6)

the 2n degree polynomial PM (λ) is transformed to a reduced polynomial PM (ρ) of n degree.

For instance if n = 2
PM (λ) = λ4 + aλ3 + bλ2 + aµλ+ µ2 (7)

PM (ρ) = ρ2 + aρ+ b− 2µ (8)

γ-Hamiltonian Systems

Any Linear Hamiltonian System can be written as:

ẏ = JH (t) y

with HT (t) = H (t) ∈ R2n×2n, one of the most important properties of any linear Hamiltonian system is that its state
transition matrix is Symplectic [2]. On the other hand, if A is a γ-Hamiltonian matrix then A+ γI is Hamiltonian matrix,
if ẋ = [A (t) + γI] = JH (t)x for H (t) = H (t)

T thus A (t) = J [H (t) + γJ ]

Definition 17 Let be
ẋ = A (t)x = J [H (t) + γJ ]x (9)

for some H (t) = H (t)
T ∈ R2n×2n where A (t) ∈ R2n×2n γ-Hamiltonian matrix. Then the system (9) is named

γ-Hamiltonian system.

Theorem 18 The state transition matrix of γ-Hamiltonian system (9) is µ-Symplectic with µ = e2γt

Proof 19 Let be N(t) = Φ (t, 0) the state transition of (9) then

d

dt
N (t) = A (t)N (t)

on the other hand (for simplicity sake of notation we omit the dependence of time in the matrices A and N )

d

dt
NTJN = ṄTJN +NTJṄ = (AN)

T
JN +NTJ (AN) = NT

(
ATJ + JA

)
N = 2γNTJN

d

dt
NTJN = 2γNTJN (10)

since 1 NT (0) JN (0) = J and from (10) we obtain

NT (t) JN (t) = e2γtJ = µJ

therefore N is µ-Symplectic. �

Corollary 20 If the γ-Hamiltonian system is τ -periodic, i.e.

ẋ = J [H (t) + γJ ]x H (t) = H (t+ τ) (11)

with HT (t) = H (t), then the monodromy matrix of (11) M is µ-Symplectic
1The the matrix product

(
d
dt
NT JN

)
NT JN = NT JN

(
d
dt
NT JN

)
is commutative

(
2γNT JN

)
NT JN = NT JN

(
2γNT JN

)
2γNT JNNT JN = 2γNT JNNT JN
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Damped Hill’s Equation

Let be the vectorial Hill’s Equation

ÿ +Dẏ + (αK + βBp (t)) y = 0 p (t) = p (t+ τ) (12)

with y ∈ Rn, α, β ∈ R, D = DT > 0, K, B ∈ Rn×n constant matrices and p (t) with zero average:

1

τ

∫ τ

0

p (t) = 0

we may express (12) as:

ẋ =

[
0 In

− (αK + βBp (t)) −D

]
x (13)

where x =
[
y ẏ

]T
if A (t) =

[
0 In

− (αK + βBp (t)) −D

]
then

ẋ = A (t)x A (t) = A (t+ τ) (14)

Remark 21 There exist an transformation such that D = SD̃ST is diagonal [7], thus without loss of generality we
assume D = Diag {d1, d2, ...dn}, therefore the matrix A (t) satisfied the definition of γ-Hamiltonian matrix with K =

KT , B = BT and γ = 1
n

n∑
i=1

di, then the system (13) is γ-Hamiltonian

0

Theorem 22 [The Floquet Factorization] Considering the system (14), then the state transition matrix can be factorized
as:

Φ(t, t0) = P−1(t)eR(t−t0)P (t0)

where P−1(t) = Φ(t, 0)e−Rt in addition P−1(t) = P−1(t+ T ). If t0 = 0 then

Φ(t, 0) = P−1(t)eRt (15)

The Floquet factorization defines a Lyapunov transformation [8, 9], as follows:

z(t) = P (t)x(t) (16)

where P (t) = eRtΦ(0, t) then ż = Ṗ x+ Pẋ =
[
ṖP−1 + PAP−1

]
z

=
[(
ReRtΦ(0, t) + eRt ddtΦ(0, t)

)
P−1 + PAP−1

]
z

=
[(
ReRtΦ(0, t)− eRtΦ(0, t)A

)
P−1 + PAP−1

]
z =

{
ReRtΦ(0, t)Φ(t, 0)e−Rt

}
z = Rz

ż(t) = Rz(t) (17)

therefore any periodic system (14) always can transform into a time invariant system2(17). Since (16) is a Lyapunov
transformation preserves the stability properties [8]. However, in order to make the transformation (16) it is necessary
to know the analytic solution of (14) which generally is not possible, only in few cases as the Meissner equation [5, 11],
or when the periodic function is a piece-wise linear function [12] or the Lamé’s equation [13], but we always can use
numerical methods to solve the system [14].

Theorem 23 [Lyapunov-Floquet] Let be
M = eRτ = Φ(τ, 0) (18)

be the monodromy matrix 3 associated to (14) and their eigenvalues σ(M) = {λ1, λ2, ..., λn} called the characteristic
multipliers then the system (14) is:
i) Asymptotically stable⇔ σ(M) ⊂ D̊ = {z ∈ C : |z| < 1}
ii) Stable⇔ σ(M) ⊂ D̄ = {z ∈ C : |z| ≤ 1}, and if |λi| = 1 it is a simple root of the minimal polynomial of M
iii) Unstable⇔ ∃ λi ∈ σ(M) : |λi| > 1 or σ(M) ⊂ D̄ & ∃ |λi| = 1 which is a multiple root of the minimal polynomial
of M

2The matrix R is not always real [10]. In the sequel, we only use the spectrum of σ(R)
3The monodromy matrix M is the transition state matrix evaluated in one period and their eigenvalues do not depend on the time t, i.e.

σ (Φ(T + t1, t1)) = σ (Φ(T + t2, t2))
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Corollary 24 Let be the eigenvalues of R, σ(R) = {ρ1, ρ2.......ρn} called characteristic exponents, then the system (14)
is:
i) Asymptotically stable⇔ σ(R) ⊂ Z̊ = {z ∈ C : Re (z) < 0}
ii) Stable⇔ σ(R) ⊂ Z̄ = {z ∈ C : Re (z) ≤ 0}, and if Re (zi) = 0 are simple roots of the minimal polynomial of R
iii) Unstable⇔ ∃ µi ∈ σ(R) : |µi| > 0 or σ(R) ⊂ Z̄ & ∃ Re (zi) = 0 which is a multiple root of minimal polynomial of
R

Proof 25 See [8] �.

Remark 26 M = eRτ is a state transition matrix evaluated in one period and (14) is γ-Hamiltonian system, then by the
theorem (18)M is µ-Symplectic . Furthermore, the matrixR is γ-Hamiltonian thus (17) is a time invariant γ-Hamiltonian
system.

Proof 27 M = eRτ µ-Symplectic
(
eRτ
)T
J
(
eRτ
)

= µJ

eR
T τ = µJe−RτJ−1

= µJ

{
I2n −Rτ +

RRτ2

2
− RRRτ3

3!
+
RRRRτ4

4!
+ ...+

Rkτ4

k!
+ ...

}
J−1

= µe−JRJ
−1τ = e2γτe−JRJ

−1τ

then

RT τ = 2γτI2n − JRJ−1τ

RTJ + JR = 2γJ

�

Using the properties of µ-Symplectic matrices developed in section 3 we can apply them to M . The system (14) is stable
⇔ |λ| < 1 but

ρ = λ+
µ

λ
(19)

and
λ2 − λρ+ µ = 0

λ =
ρ±

√
ρ2 − 4µ

2
(20)

then
|λ| ≤ 1⇔ |ρ| ≤

√
2 (1 + µ) (21)

For damped Hill’s Equation (13) with n = 2 we have

PM (λ) = λ4 + aλ3 + bλ2 + aµλ+ µ2 (22)

where
a = −Trace (M)
b = 1

2

[
a2 − Trace

(
M2
)] (23)

and the reduced polynomial
PM (ρ) = ρ2 + aρ+ b− 2µ

ρ12 =
−a±

√
a2 + 8µ− 4b

2
(24)

If (13) is stable→ λ ∈ C, λ1 = x− iy, λ3 = x+ iy and since the eigenvalues λ are symmetric with respect to the circle
of radius

√
µ

λ1 = x− iy −→ λ2 = µ
λ1

= µ (x+ iy)

λ3 = x+ iy −→ λ4 = µ
λ3

= µ (x− iy)
(25)

then is is easy to find de roots of (22). This is of great help, not only in the analysis of the damped Hill’s equation,
computationally it is not necessary to use numerical method to calculate the eigenvalues of the monodromy matrix,
applying the relations (23) and the formulas (24) (20) it can compute the eigenvalues of M , this is due to symmetry of
µ-Symplectic matrices.
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Figure 2: (a) Mechanical Model, (b) Characteristic multipliers position for attenuation

Theorem 28 The Damped Hill’s Equation (13) with n = 2 is Asymptotically stable if and only if the inequalities:

b+ (1 + µ)a+ (1 + µ2) > 0

b− (1 + µ)a+ (1 + µ2) > 0

µ2 + 4µ+ 1− b > 0

µ4 + 2µ3 + 2µ2 + 2µ+ 1 + a2µ− b (µ+ 1)
2

+ > 0

are satisfied.

Proof 29 If 4 λ = s+1
s−1 then

P (z) = λ4 + aλ3 + bλ2 + aµλ+ µ2

P (s) =
(
s+1
s−1

)4
+ a

(
s+1
s−1

)3
+ b

(
s+1
s−1

)2
+ aµ

(
s+1
s−1

)
+ µ2 = 0

P (s) = s4
(
aµ+ 1 + b+ µ2 + a

)
+ s3

(
−4µ2 + 2a+ 4− 2aµ

)
+ s2

(
6µ2 − 2b+ 6

)
+ s

(
4− 4µ2 − 2a+ 2aµ

)
+(

b− a− aµ+ µ2 + 1
)

therefore (13) is stable if Re(s) <0. Applying the Routh-Hurwitz Criterion we obtain the inequal-
ities of the theorem. �

Attenuation of Vibrations

The mass-spring model of the Fig. 2 is modeled by

Mÿ +Dẏ + K̃y = 0 (26)

where y =
[
x1 x2

]T
and M = MT > 0, D = DT > 0, K̃ = K̃T ∈ R2×2 are constant matrix

M =

[
m1 0
0 m2

]
; D =

[
d1 0
0 d2

]
, K̃ =

[
k1 + k2 −k2
−k2 k3 + k2

]
(27)

since D > 0 the system (26) always is asymptotically stable . If

ki(t) = kia + βkib cos(ωt)

with kia > 0, |kia | > |kib | for i = 1, 2, 3 then (26) is transformed into time periodic system

ẋ =

[
02×2 I

2×2

−M−1 (K + βBp (t)) −M−1D

]
x (28)

where x =
[
x1 x2

]T
K =

[
k1b + k2b −k2b
−k2b k3b + k2b

]
; B =

[
k1b + k2b −k2b
−k2b k3b + k2b

]
; p (t) = cos (ωt)

4The transformation is a mapping of the plane ’λ’ into the plane of ’s’, all the points in the plane ’λ’ that are inside of the unit circle will be mapped
into the left half-plane of the plane ’s’, the points on the unit circle will be mapped in the imaginary axis and the points outside the unit circle on the
right half-plane of the ’s’ plane.
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Figure 3: Stability Chart and attenuations zones of (28) (29)

Therefore the goal of this section is to show that for some parameters (ω, β) the responses of the system (28) are more
attenuated than the responses of (26), to prove this assertion it is possible to compute Lyapunov exponents of (28) and
(26) to compare the attenuation of the systems,see [11]. In previous works [3, 4] through the averaging and perturbations
methods is concluded that the maximal attenuation occurs close to the called anti-resonance frequencies ωk = ω2−ω1

k
where σ (K) =

{
ω2
1 , ω

2
1

}
.

It is known that for a second order system the real part of s is related to the attenuation factor. We have a fourth order
system but due to the µ−symmetry, it is equivalent to analyze the system as second order. If the system (28) is transformed
into time-invariant γ-Hamiltonian system (17) then characteristic exponents ρ are symmetric with respect to the vertical
line γ, then the better position to obtain attenuation occurs when the characteristic exponents are on the line γ and closer
to the real axis, this is equivalent to say that the characteristic multipliers λ are on the circle of radius r =

√
µ and close

to the negative part of the real axis. This condition correspond to the attenuations zones of a discrete system of second
order [15]. The algorithm can be stated as finding the parameters (ω, β) such that characteristic multipliers λ are on the
unit circle and one pair of them be close to the real axis, i.e its argument θ1 < θ < θ2 see Fig. 2(b).
Of course this algorithm is a semi-analytical method because we need to compute by numerical methods the monodromy
matrix, but after computation of the monodromy matrix, the numerical methods are no required, with the formulas (23)
(24) (20) λ is computed. However, the described method does not allow finding a direct relation between the frequencies,
which is a drawback. .

Example
For the matrices

M =

[
1 0
0 0.5

]
; B =

[
0 0
0 1

]
; K =

[
3.1 −0.1
−0.05 1.05

]
(29)

the parametric excitation is inserted in k3 only, following the algorithm for θ1 = θ2 = 8◦ we obtain the stability chart
Fig. 3, where the gray zones are unstable while the red zones suggest where the attenuation occurs. Of curse, the red lines
are thinner close to β = 0. Select (ω, β) inside of the red zones as example ω = 0.3095, β = 0.705 and ω = 0.32175,
β = 0.768 and making a numerical simulation, the responses of the state are shown in Fig. 4. In the Fig. 5 can be observed
the characteristic multipliers and exponents configuration position due to the algorithm.

Conclusions

The symmetry of the γ-Hamiltonian System was used to analyzed the damped Hill’s equation. As a result of this anal-
ysis was feasible to know the better position of the characteristics multipliers and exponents to achieve an increase in
dissipation by parametric excitation for the attenuation of vibrations in a mechanical system.
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Figure 4: Examples of the response’s signals of equations (28)(29) and (28) without parametric resonance
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Figure 5: Characteristic multipliers and exponents for ω = 0.3217 β = 0.768


