
ENOC 2017, June 25-30, 2017, Budapest, Hungary

Impulsive damping of mechanical systems: periodic solutions and energy harvesting
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Summary. In the present contribution, periodic impulsive damping isintroduced with the aim to extract energy from externally excited
mechanical systems. It is shown that periodic solutions exist, which allow to extract much more energy from the mechanical system
than an optimized passive one. The influence of the impulsivestrength and the frequency of the external excitation to theextracted
energy are investigated.

Introduction

Affecting the energy content of mechanical systems in a targeted manner is the focus of all measures for vibration control
or energy harvesting, and hence, a variety of active and passive methods have been developed. Most of them are based on
continuously influencing the mechanical system. For example, energy harvesting by introducing time-periodic damping
of a single-degree of freedom system is investigated in [1].By contrast, the effect of stiffness impulses to the modal
energy content of mechanical systems was investigated in [2]. It was demonstrated that therewith, a transfer of vibration
energy across modes is possible, which finally results in a much faster decay of vibration amplitudes.
In the present contribution, periodic impulsive damping isintroduced with the aim to extract energy from externally
excited mechanical systems. It is shown that periodic solutions exist, which allow to extract much more energy from the
mechanical system than an optimized passive system.

Analytical Investigations

Figure (1) shows a sketch of the investigated mechanical system, consisting of a base excited non-linear single degree of
freedom oscillator with massm, constant stiffness k and time-varying damping coefficientc(t).
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Figure 1: Sketch of investigated mechanical system.

The time-varying dampingc(t) is assumed to be of the form

c(t) = cI + cP

{
K∑

k=1

εkδ(t− tk)

}

, (1)

wherecI = const., andδ(t − tk) represents the Dirac delta func-
tion. Furthermore, it is assumed that the impulsive dampingis time-

periodic, i.e. the time span∆t = tk+1 − tk, k = 1 . . .K, between adjacent impulses is constant, as well as the impulsive
strengthcP εk = cP ε. Introducing the relative displacementz = x− y allows to write the equations of motion in the form

mz̈ + c(t)ż + kz = −mÿ, (2)

wherey(t) = Y sin(Ωt) represents the external base excitation. The relation between the state-vectorzk−1,+ just after an
impulse applied at the instant of timetk−1, and the state-vectorzk,− just before the following impulse is obviously given
by

zk− = D(∆t)zk−1,+ + ze,k, (3)

where the first term represents the zero-input response, andthe second one the zero-state response obtained from solving
the convolution integral. The state-vector just after a parametric impulse is given byzk+ = Jzk−, see Hsu [3], where
J = e

Â is denoted as jump-transfer matrix. Therein, the matrixÂ contains the parameters with impulsive behaviour. In
the present case where damping impulses are appliedÂ = diag(0,−εcP /m) holds, i.e. only the velocitẏz is subject of
variation, whereas the displacementz remains unchanged across an impulse, see also [4]. If a sequence ofp impulses is
applied, the state vector after the last impulse is given by

zp+ = (JD)pz0+ +

p−1
∑

r=0

(JD)rJze,p−r

︸ ︷︷ ︸

ze,p

. (4)

In the following, it is assumed that an equidistant number ofp impulses is applied withinN periods of external excitation.
A corresponding steady-state solutionz

(N)
p satisfies

z
(N)
p = (JD)pz(N)

p + ze,p, (5)

which is unique ifI− (JD)p is non-singular, whereI represents the identity matrix. In this case, the steady-state solution
is given by

z
(N)
p = (I− (JD)p)−1

ze,p, (6)
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which is globally attracting if the absolute values of all eigenvalues of(JD)p are less than one. The variation of the
total energy of the mechanical system afterN periods of external excitation,caused by the parametric impulses, is given
by E

(N)
ex,p = 1

2m
∑k+p−1

k (ż2k+ − ż2k−). For the sake of comparison, a passive system is introduced,where the impulsive
damping is replaced by a constant dampingcV . It was shown by Di Monaco et al., see [1], that an optimum value
cV,opt. = 1/Ω

√

(k −mΩ2)2 + (cIΩ)2 exists, which allows to extract a maximum of energy from the mechanical system.

Numerical Results

For the following numerical results, the system parametersm = 1kg, k = 1N/m, cI = 0.1Ns/m, cP = 1Ns/m and
Y = 1m are used. Figure (2) (a) shows the extracted energy in the steady-state perN = 1 period of external excitation,
p = 2, . . . 5 damping impulses andΩ = 1.2, for different values ofε. One observes that for eachp, an optimum value
of ε exists, which allows to extract as much energy as possible, e.g. for p = 2, εopt = 3.20. The steady-state solution
for N = 1, p = 2, εopt = 3.20 is depicted in Fig. (2) (b), demonstrating the periodic occurrence of jumps in the velocity
ż. In Fig. (2) (c) the effect of a variation of the relative excitation frequencyΩ/ωn, whereωn represents the natural
frequency of the system, is investigated. Therefore, for each depicted case the optimum value ofε is calculated based on
Ω = 1.2. Additionally, a passive system is introduced, wherecV,opt. is based on the same frequency. ForΩ > 1.1, the
system withN = 1, p = 2 allows to extract much more energy than the passive system. In the vicinity ofΩ/ωn = 1,
E

(1)
ex,2 drops down to zero. In this range,p = 3, 4, 5 give almost the same result than the passive system. Figure (2) (d)

provides a comparison of the impulsively excited, and the passive system. The relationκ = E
(N)
ex,p/Eex,passive is depicted

for p = 2, 3. It clearly shows that forΩ > 1.1, the parametric impulses allow to extract much more energy from the
mechanical system than the optimized passive damper. For example, atΩ/ωn = 2, the extracted energy isκ = 5.4 times
higher.
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Figure 2: Extracted energyEN
ex,p by impulsive damping for different values ofε (a), timeseries of the steady-state solution in the case

N = 1, p = 2 andεopt = 3.20 (b), E(N)
ex,p for variation of the frequencyΩ of the external excitation and comparison with optimized

passive system (c), and relative extracted energyκ for N = 1 andp = 2, 3 (d).

Conclusions

It was shown that impulsive parametric damping allows to extract energy from externally excited mechanical systems
much more efficiently than an optimized passive system. Moreover, the existence of periodic solutions was demonstrated.
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