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Experimental Validation of Vibro-Impact Force Models using Numeric Simulation and
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Summary. The frequency response of a single-degree of freedom vibro-impact oscillator is analysed using Harmonic Linearization,
Averaging and Numeric Simulations considering two different impact force models, one given by a piecewise-linear function and
other by a high-order polynomial. Experimental validation is carried out using control-based continuation to obtain the experimental
frequency response, including its unstable branch.

Introduction

The objective and main originality of this work is to compare different impact force models using analytical, numeric and
experimental techniques. The frequency response of a single-degree of freedom vibro-impact oscillator is analysed using
Harmonic Linearization and Averaging considering two different impact force models, one given by a piecewise-linear
function and other by a polynomial one, see [4]. Experimentally, control-based continuation [2, 3] is used to obtain the
frequency response of an impacting beam, including its unstable branch. Numeric simulations are used to validate simple
analytic approximations obtained by perturbation methods.

Experimental Setup

The experimental setup has been described previously by [2, 3], where a model-free controller was tuned for performing
control-based continuation, obtaining the system’s frequency response and analysing the stability of the orbits found. It
consists of a cantilever beam with lumped mass attached to a platform, which is connected to an electrodynamic shaker,
see Fig. 1a. A pair of symmetrically situated stops restrain the lateral movement of the beam, and two electromagnetic
actuators are placed on each side of the mass to execute control-based continuation.

(a) Test rig with shaker, actuators and sen-
sors.

(b) Detailed view of the beam.
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(c) Mechanical Model.

Figure 1: Experimental setup and mechanical model.

The lumped mass dynamics dominates the oscillations in comparison to the flexible beam alone. The lumped mass is
located with a reasonable distance from the stops with clearance, which can be considered as rigid supports, causing
near-elastic impacts.

Mathematical Modeling

The Galerkin method is used to discretize a Bernoulli-Euler model for the test beam, giving a single DOF nondimensional
model: q̈+ 2βsq̇+ q+FI(q, q̇) = Ω2b sin(Ωt), where q is a modal displacement coordinate, βs is the structural damping
coefficient, b and Ω are the forcing amplitude and frequency. The amplitudes of modal oscillations and forcing excitations
are normalized by the gap width, ∆ ≈ 1.6 mm, and the forcing frequency is normalized by the system’s fundamental
linear natural frequency, fn ≈ 7.6 Hz. In order to apply harmonic linearization and averaging, one can use the following
assumptions: 1) damping, forcing and nonlinear terms are weak; and 2) a mono-frequency first order solution, i.e.,
q(t) = Q sin(Ωt+ϕ). The impact force FI(q, q̇) can be approximated by a polynomial, according to [4] or as a piecewise
linear function, [1]. The impact force is a combination of restoring and dissipative forces. It can be approximated by
a polynomial in the modal displacement, FI(q, q̇) = feq

2n−1 + 2βIq
2pq̇, where fe is the impacting restoring force

coefficient and βI is the impacting damping. The piecewise linear impact force appears only when the displacement
exceeds the gap, i.e. |q| ≥ 1. If q ≥ 1 the force is equal to (ω2

I − 1)(q − 1) + 2βI q̇ and (ω2
I − 1)(q + 1) + 2βI q̇ if

q ≤ −1, otherwise it is zero. Here, ωI is the non-dimensional impacting linear natural frequency. In terms of model
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tuning the piecewise-linear model contains fewer parameters than the polynomial one. Numerically, the discontinuity of
the piecewise linear model makes its simulation more demanding. The same can be said for polynomial force with high
values of n and p.

Results

The aforementioned perturbation methods can be used to obtain the approximate frequency response of the impact oscil-
lator as an implicit frequency-amplitude relationship. To obtain the numeric values of the model parameters, this relation-
ships are fitted to the experimental data obtained by control-based continuation. The result is βI = 60× 10−3, fe = 0.12,
n = 4 and p = 1 for polynomial force model; ωI = 4 and βI = 0.16 for piecewise linear force; and βS = 18 × 10−3,
b = −0.14 for structural damping and forcing amplitude. To check the validity of the assumptions made, the fitted values
are used to obtain the frequency response of the system by numeric simulation. The results are shown in Fig. 2, where
one can see that both force models give results reasonably close to experimental observations. Also, one can see that the
perturbation methods are equivalent, giving the same frequency response. Thus, the assumptions made appears adequate.
Comparing the force models, it is easy to see that the piecewise-linear model is able to predict the experimental behaviour
more precisely, capturing both fold points, while the polynomial model fails to predict the upper folding point and has
its lower fold point further away from experimental data. The precision of the piecewise linear model agrees with results
found on literature, such as [5], where averaging was used to obtain the frequency response of a piecewise-linear isolator
around resonance.

(a) Piecewise-linear impact force. (b) Polynomial impact force.

Figure 2: Comparison of frequency responses.

Conclusions

Two different impact force models (polynomial and piecewise-linear) were analysed and validated against experimental
observations. Averaging and Harmonic Linearization were used to obtain the system’s frequency response and to tune
the force models using experimental data. The results show that both perturbation methods provide equivalent results for
the system under analysis and that the frequency-amplitude relationship obtained can be used to obtain numeric values
for model parameters. Regarding the impact force models, the piecewise-linear force seems to describe the frequency re-
sponse more accurately, predicting both folding points while the polynomial force predicts only one and not so accurately
as the piecewise linear force.
Further experimental validation of other impact models, like kinematic impact with coefficient of restitution and analysis
by nonsmooth transformations [6], can be relevant to compare different vibro-impact models in terms of ease of use,
applicability and reliability.
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