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Sufficient conditions for convergence of discrete-time Lur’e type systems1
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Summary. Discrete-time Lur’e type systems are the interconnection between a discrete-time linear plant and a static nonlinearity
satisfying sector conditions. The notion of convergence for such systems is investigated in this paper. We provide sufficient conditions
based on two Lyapunov functions. These conditions are formulated as tractable matrix inequalities.

Introduction

The notion of convergence has been introduced in [1] for nonlinear continuous-time systems. A system is called con-
vergent if two conditions are fulfilled: there exists a unique solution that is bounded on the whole set of times and this
solution is globally asymptotically stable. This generic notion is of crucial interest for several issues in control system
theory: output regulation, tracking, model reduction, frequency response functions for nonlinear systems. The literature is
rich concerning sufficient conditions ensuring that a continuous-time nonlinear system is convergent [1, 6]. Nevertheless
to the best authors’ knowlegdge, only the paper [5] copes with the framework of discrete-time nonlinear systems. The
aim of this paper is to provide sufficient conditions to ensure the convergence of discrete-time Lur’e systems.

Main result

Let us consider a general discrete-time nonlinear system defined by

xk+1 = f(xk, wk, k), ∀k ∈ N, (1)

where xk ∈ Rn is the state and wk ∈ Rm is the input. We assume that the function f : Rn×Rm×Z→ Rn is continuous
with respect to the two first arguments for any third one. The notion of convergence is defined as follows.

Definition 1 The discrete-time nonlinear system (1) is said to be (uniformly, exponentionally) convergent if i) there exists,
for any given bounded input wk, a unique solution xwk , called steady-state solution, that is defined and bounded on Z and
ii) xwk is globally (uniformly, exponentially) asymptotically stable.

The system of the form (1) is too generic to allow tractable sufficient conditions to ensure its convergence. Here we will
consider the particular class of discrete-time Lur’e type systems defined as the interconnection between a linear plant and
a static nonlinearity and formalized by

xk+1 = Axk +Bϕ(yk) + Fwk, yk = Cxk, ∀k ∈ N, (2)

with ϕ : Rp → Rp a static decentralized nonlinearity [4] verifying the following cone bounded sector conditions concern-
ing respectively the nonlinearity and its slope, for all positive definite diagonal matrices R,S ∈ Rp×p and given positive
definite diagonal matrices Ω and Ω:

SCΩ(R, y) := ϕ(y)′R(ϕ(y)− Ωy) ≤ 0, ∀y ∈ Rp, (3)

SCΩ(S, ya, yb) := (ϕ(ya)− ϕ(yb))′S(ϕ(ya)− ϕ(yb)− Ω(ya − yb)) ≤ 0, ∀ya, yb ∈ Rp. (4)

Thanks to the condition (4), the nonlinearity ϕ is continuous and induces the continuity with respect to xk and wk of the
map f := Axk +Bϕ(Cxk) +Fwk, which is independent on the time k. It should be also noticed that the nonlinearity ϕ
is monotonic to avoid the existence of multiple fixed points of the system (2) preventing its convergence.
The convergence of a system is based on two main key points: incremental stability and the existence of a positively
invariant compact set. The idea to reach these two crucial properties is to use two Lyapunov functions. The choice of
the class of these Lyapunov functions should be suitable for discrete-time Lur’e systems and is inspired by the class of
Lyapunov Lur’e functions introduced in [3, 2] and consisting of the sum of a quadratic term with respect to the state xk
and a cross term between the nonlinearity ϕ(yk) and the output yk.
If there exist a symmetric positive definite matrix P1 ∈ Rn×n, diagonal positive definite matrices S1, S2,∆1 ∈ Rp×p and
a scalar 0 < ρ < 1 such that A′

B′

0

P1

 A′

B′

0

′ −
 ρP1 C ′Ω(ρ∆1 − S1) −A′C ′Ω(∆1 + S2)

? 2S1 −B′C ′Ω(∆1 + S2)
? ? 2S2

 < 0n+2p, (5)
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with ? denoting a symmetric term, then by using the function V1(xa, xb) = (xa − xb)′P1(xa − xb) + 2(ϕ(Cxa) −
ϕ(Cxb))′∆1ΩC(xa − xb), ∀(xa, xb) ∈ Rn × Rn, we have the following properties. Firstly V1(xa, xb) > 0 for xa 6=
xb thanks to the condition (4), see [2]. Secondly, pre- and post-multiplying Inequality (5) by a vector concatenating
(xak−xbk), (ϕ(yak)−ϕ(ybk)) and (ϕ(yak+1)−ϕ(ybk+1)), we obtain V1(Axak+Bϕ(Cxak), Axbk+Bϕ(Cxbk))−ρV1(xak, x

b
k)−

2SCΩ(S1, y
a
k , y

b
k)− 2SCΩ(S2, y

a
k+1, y

b
k+1) < 0, for xak 6= xbk that induces V1(xak+1, x

b
k+1)− ρV1(xak, x

b
k) < 0 and finally

the incremental stability of (2). In addition, if there exist a symmetric positive definite matrix P2 ∈ Rn×n, diagonal
positive definite matrices S3, S4,∆2 ∈ Rp×p and positive definite scalars τ1, τ2, c and δ such that

A′

B′

0
F ′

P2


A′

B′

0
F ′


′

−


τ1P2 C ′Ω(τ1∆2 − S3) −A′C ′Ω(∆2 + S4) 0
? 2S3 −B′C ′Ω(∆2 + S4) 0
? ? 2S4 −(∆2 + S4)ΩCF
? ? ? τ2Im

 < 0n+2p+m (6)

c(−1 + τ1) + τ2δ ≤ 0, (7)

then by using the function V2(x) = x′P2x + 2ϕ(Cx)′∆2ΩCx, ∀x ∈ Rn, it yields by pre- and post-multiplying In-
equality (6) by a vector concatenating xk, ϕ(yk), ϕ(yk+1) and wk and summing the result to (7), that it holds that
V2(Axk +Bϕ(yk) + Fwk)− c− τ1(V2(xk)− c)− τ2(w′kwk − δ)− 2SCΩ(S3, yk)− 2SCΩ(S4, yk+1) < 0 for xk 6= 0.
Thanks to the S-procedure, we have the implication V2(xk+1) ≤ c if V2(xk) ≤ c and w′kwk ≤ δ and hence the existence
of a positively invariant compact set. The inequalities (5)–(7) are bilinear matrix inequalities, but linear when fixing the
scalars ρ, τ1, τ2, c and δ.

Numerical illustration

Let us consider the numerical example with n = 2,
p = m = 1, Ω = Ω = 1.1, wk = cos((k − 1)π/3),
∀k ∈ N,

A =

[
0.9 0.1
0.4 −0.8

]
; B =

[
−0.6
1.2

]
;

C =
[

2 0.27
]

; F =

[
0.4
0.1

]
;

and the nonlinearity ϕ defined as a deadzone by

ϕ(y) = Ωsign(y) max(0, |y| − 1), ∀y ∈ R.

For ρ = 0.99, τ1 = 0.9, τ2 = 10, c = 200 and δ =
1, the inequalities (5)–(7) admit the following solution
∆1 = 0.0752; ∆2 = 0.016; S1 = 2.89; S2 = 0.35;
S3 = 0.47; S4 = 0.009;

P1 =

[
11.42 0.47
0.47 0.62

]
;P2 =

[
2.04 0.09
0.09 0.09

]
.

The convergence of two distinct trajectories to the
steady-state solution is emphasized on Figure 1.
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Figure 1: Trajectories starting from xa0 = (0 4)′ and xb0 =
(3 − 2)′.

Conclusions

Sufficient conditions in terms of Lyapunov Lur’e functions has been provided for convergent discrete-time Lur’e type
systems by ensuring incremental stability and the existence of a compact positively invariant set. Tractable LMIs have
been presented for the existence of such Lyapunov functions.
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