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Summary. This paper presents the partial model free control (MFC) design of a two-input two-output 2-DOF helicopter system.
Within the framework of the model free control, a state-feedback strategy is designed to control the system. The system is assumed
to be unknown and its dynamics are estimated from extensive measurements in real-time. Simulation results show that the model free
control is an effective fault-tolerant approach and is able to achieve good tracking performance of the multi-input multi-output system.
The control performances are also compared with the LQR control based on the nominal model of the system. The control effects of
the numerical results for the partial model are quite promising.

Introduction

The traditional linear and nonlinear control techniques such as classical PID, backstepping and sliding mode control
algorithms are model-based [1–3]. Model free approach is desirable and there have been quite some studies of model-free
controls recently [4, 6–8]. The model-free control takes advantage of the fast algebraic parameter estimation combined
with an ultra local model, avoiding using complex non-linear models in control design. The control scheme is valid
for a small time window, and is updated in real time thanks to a fast estimator. The control law proposed consists of a
PID controller augmented with compensating terms provided by the online estimation of the unknown system dynamics,
leading to the so-called intelligent PID (iPID) control [9, 10]. The main advantage of the model-free control strategy is
that it doesn’t require neither prior knowledge of the system dynamics, nor complex parameters tuning [9].
Model-free control has been applied to many fields recently [11], such as dc/dc converters [10], active magic bearing [12],
shape memory alloy [13], active braking control systems for two-wheeled vehicles [14], two-wheeled inverted pendulums
[15], quadrotor UAV [16], two-dimensional planar manipulator [17] and the magnetic levitation system [18]. The model
free control approach has also been applied to control the automotive engine and brake for stop-and-go scenarios [19].
Taking the position control of a shape memory alloy active spring, an experimental comparison of classical PID and
model-free control have been done [20]. The stability margins of model-free control is studied by Flisee [21]. To deal with
control of underactuated mechanical systems for stable limit cycles generation, a dual model-free controller is developed
[22, 23]. The model free control method has also been applied to control unknown time delayed system [24]. The
model-free control method proposed by Fliess is used to control systems with a single control variable and a single
output variable [25]. To control systems with multi-input variables and multi-output variables (MIMO) with the model-
free control method, the dynamics could be decomposed into multi-SISO systems. Each decoupled dynamics could
be controlled by a designated nonlinear controller. Then the augmentation of the MFC can be utilized to control the
MIMO system [26, 27]. The model-free controller with an observer is proposed for a class of uncertain continuous-
time multi-input multi-output nonlinear dynamic systems [28]. A discrete-time formulation of the model-free control
algorithm, named data-driven model-free control, is put forward in the framework of a MIMO system with azimuth and
pitch position control loops [29–32]. In this paper, we take the model-free control method to control a MIMO nonlinear
helicopter system. We assume that the system model is partially known so that it doesn’t need to decompose the system
into multi-SISO dynamics.
The structure of this paper is as following. A 2-DOF nonlinear helicopter system is presented in Section . Section
reviews the model-free control method and introduces the model-control control design process for the MIMO system.
The simulation and experimental results are presented in Section . At last, Section concludes the paper.

Modeling of the 2-DOF Helicopter System

A 2-input-2-output helicopter module made by Quanser company is shown in Figure 1. The nonlinear dynamic equations
that describe the motions of the pitch and yaw motion with respect to the servo motor voltage can be written as
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where the variables θ (pitch angle) and ψ (yaw angle) are generalized coordinates, Vmp and Vmy are the input voltages
acting on pitch and yaw servo motors respectively. Other specifications of the helicopter system are listed in Table 1.
Define a state vector x(t) = [θ, ψ, θ̇, ψ̇]T and the dynamic equations can be packaged in matrix form

ẋ(t) = A(x)x+G(x) +B(x)u(t), (2)
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The linear dynamic equations which have been linearized near the quiescent point (θ0 = 0, ψ0 = 0, θ̇0 = 0, ψ̇0 = 0) of
the nonlinear Equation (1) can be written in state space,
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where

Al =


0 0 1 0
0 0 0 1

0 0
−Bp

Jeq,p+mhelil2cm
0

0 0 0
−By

Jeq,y+mhelil2cm

 , (7)

Bl =


0 0
0 0
Kpp

Jeq,p+mhelil2cm

Kpy

Jeq,p+mhelil2cm
Kyp

Jeq,y+mhelil2cm

Kyy

Jeq,y+mhelil2cm

 . (8)

Model-Free Control Design

Model free control has no physical model but a purely numerical model which involves very few parameters that are
estimated online during operation of the plant. The feedback control law is built and tuned by the numerical model and is
thus updated at each sample time. Model free control relies on the real-time estimation of derivatives of measured signals.

Review of SISO Model Free Control
The input-output relation of a single input single output (SISO) system could be represented by an first order local process
model,

ẏ (t) = F (t) + αu (t) , (9)

where F (t) is a continuously updated value that represents the overall time-varying dynamics of the system, and it could
be approximately estimated using the information from the control signal u(t) and the controlled output y(t) [25]. α > 0
is a design parameter. The ideal value of α is set to the value of the exact model parameter b, assuming the exact model is
ẏ (t) = f (t) + bu (t).
The tracking error e(t) is defined as

e(t) = y(t)− yd(t),

where yd(t) is the desired tracking reference trajectory.
The key process of model-free control design is to estimate the differential ẏ(t). As we all known, there are several
math tools which could help us to finish this work, such the Taylor expansion and first order derivative plus lowpass filter
technique.
Let T be the sample time of a digital system, and p > 0 be the bandwidth parameter of an anti-aliasing lowpass filter. The
derivative of a measured signal can be computed by passing the measurement through the following transfer function,

H(s) =
p

s+ p
s. (10)

This filter generates the estimate of ẏ(t), with the notation [ẏ (t)]est, which leads to the modified expression of (9),
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Fest (t) = [ẏ (t)]est − αu (t) , (11)

where Fest (t) is the estimation of the unknown system dynamics F (t). The derivative of the desired reference trajectory
ẏd(t) can also be generated with the lowpass filter described in (10).
In general, the model-free control input could be written as follows,

u =
−Fest + ẏd + uc

α
, (12)

where uc is the control input of the feedback controller need to be designed. By substituting (12) into (9),

ẏ = F + α(
−Fest + ẏd + uc

α
) (13)

= eest + ẏd + uc.

where eest = F − Fest is the estimation error of the known system dynamics. The control structure is characterized by
the following tracking error dynamics,

ė(t) = eest + uc. (14)

If the system dynamics F can be estimated exactly, i.e. eest ≈ 0, the estimation error eest can be seen as disturbance and
the system output y(t) will track yd(t) in finite time by designing the local controller uc, such as iP, iPD, iPID methods,
and so on.

Partial Model Free Control for MIMO Systems
For the 2-input 2-output helicopter system, we assume the matrix B(x) in Equation (6) is known prior and take the
ultra-local model as follows,

ẏ (t) = F (t) + αu (t) , (15)

where y (t) = [θ̇, ψ̇]T is the velocity part of the state variable x(t) defined previously, F (t) = [F1(t), F1(t)]
T is the

matrix form of the system dynamics except the gravity part, u (t) ∈ R2 is the control input, α is the last two rows of
matrix B(x) and can be written as following,
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Then the state equation (6) of this helicopter system can be written as
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[
y (t)
F (t)

]
+

[
02×2

α

]
u (t) . (17)

Based on the knowledge of model free control design for SISO system, we propose a partial model free control design
method for the ultra-local system (15). We first estimate the derivative of y (t) by the lowpass filter (10). Then the system
dynamics F (t) can be obtained from the derivative estimation and the control input,

Fest (t) = [ẏ (t)]est − αu (t) . (18)

Then define the control input u(t) as the following form

u (t) = α−1 [−Fest (t) + ẏd (t)] + v (t) , (19)

where ẏd (t) = [θ̈d, ψ̈d]
T is the derivative estimation of yd, and v (t) ∈ R2×1 is a control vector need to be designed

further. Substituting (19) into (15),

ẏ(t) = F (t)− Fest (t) + ẏd (t) + αv (t)

= eest + ẏd (t) + αv (t) .

Define a tracking error state as e = x − xd. Substituting (19) into (17), the state equation can be transformed into error
state as

ė(t) =

[
02×2 I2×2

02×2 02×2

]
e (t) +

[
02×1

eest

]
+

[
02×2

α

]
v(t). (20)

When the estimation Fest (t) is enough close to the real system dynamics F (t), i.e. eest ≈ 0, the complex nonlinear
control design problem is translated to a linear control design problem. Lots of linear control design methods can be used
to control the system (20). It is mentioned that the matrix α must be known prior and be invertible.
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Simulation of the Control Strategy

The input voltages of the pitch and yaw motors with respect to the pitch and yaw control output uθ and uψ are

Vmp =

 Vθ,min

uθ
Vθ,max

uθ ≤ Vθ,min

Vθ,min < uθ < Vθ,max

uθ ≥ Vθ,max

, (21)

Vmy =

 Vψ,min

uψ
Vψ,max

uψ ≤ Vψ,min

Vψ,min < uψ < Vψ,max

uψ ≥ Vψ,max

. (22)

when using the UPM-2405 DC motor, the pitch control voltage uθ is saturated by the maximum amplifier voltage
Vθ,max = 24V and the minimum voltage Vθ,min = −24V . Similarly, the yaw control voltage uψ when using the
UPM-1503 DC motor is limited to a maximum voltage of Vψ,max = 15V and a minimum voltage of Vψ,min = −15V .

LQR Control
To show the model free control performances of the MIMO helicopter system (2), we take the linear quadratic regulator
(LQR) design as the comparison. A feed-forward and a proportional integral differential (FF+PID) control algorithms are
designed to regular the pitch angle θ. A PID controller is designed to control the yaw angle ψ.
In FF+PID control, the pitch position is regulated using a nonlinear feed-forward loop that compensates for the gravita-
tional torque τg = mhiliglcm cos θ in Equation (1). The feed-forward control is designed as

uff = kff
mhiliglcm cos θd

Kpp
, (23)

where θd is the desired pitch angle and kff is the feed-forward control gain, here take kff = 1.0. This applies the bulk of
the voltage needed to hover the helicopter at the commanded position.
An integrator is introduced to the feed back control to minimize the steady-state error. By introducing two extended state
variables x5 =

∫ t
0
[θ (τ)− θd (τ)] dτ and x6 =

∫ t
0
[ψ (τ)− ψd (τ)] dτ, the PID control [upid,θ, upid,ψ]

T
= K (xd − x)

is designed, where

K =

[
k1p,θ, k1p,ψ, k1d,θ, k1d,ψ, k1i,θ, k1i,ψ
k2p,θ, k2p,ψ, k2d,θ, k2d,ψ, k2i,θ, k2i,ψ

]
, (24)

Thus the control inputs can be expressed as[
uθ
uψ

]
=

[
uff
0

]
+K (xd − x) . (25)

Choosing appropriate weighting matrix Q, R and considering the linearized state equation (6), the feedback control gain
K can be solved as

K =

[
18.9366, 1.9798, 7.4920, 1.5280, 7.0291, 0.7696
2.2223, 19.4458, −0.4503, 11.8933, −0.7696, 7.0291

]
, (26)

Q = diag
([

200, 150, 100, 200, 50, 50
])
, (27)

R =

[
1 0
0 1

]
. (28)

Partial MFC Method
With the model free design, the tracking control problem of the complex nonlinear MIMO dynamic system (1) have been
transformed to control the linear equation (20). The next step we need to do is to design the control law v(t).
We also tale PID design method to design v(t). By introducing two extended state variables e5 =

∫ t
0
[θ (τ)− θd (τ)] dτ

and e6 =
∫ t
0
[ψ (τ)− ψd (τ)] dτ, the PID control law is

v(t) = −Pe(t), (29)

where P ∈ R2×6 is a feedback control gain matrix. However, from (5) and (16), we find the matrix α is not a constant
matrix. In design process, we take its linearization, that is the last two rows of Bl.
Choosing the same weighting matrix Q, R in (27-28) and considering the coefficient matrix of error state equation (20),
the feedback control gain P can also be solved as

P =

[
18.7248 1.29871 0.7475 0.9424 7.0535 0.4984
−1.3867 19.2759 −0.9302 15.7588 −0.4984 7.0535

]
. (30)

So the model free control law of the MIMO nonlinear helicopter system (15) is

u (t) = α−1 [−Fest (t) + ẏd (t)]−Pe(t), (31)
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Simulation Results
In this subsection, we set two scenarios to simulate the 2-input 2-output nonlinear helicopter system (1) controlled with
LQR and MFC methods respectively.

Scenario 1 Step Response Study

In this scenario, we set the tracking references θd(t) and ψd(t) as

θd(t) = 0, ψd(t) = 90◦. (32)

Figure 2 shows the step reponses of angle θ and ψ respectively. From this figure, we can visually find that the pitch angle
θ is well controlled with both LQR and MFC methods. However, it has a smaller overshoot of the yaw angle ψ controlled
with MFC method. Figure 3 shows the control forces of uθ and uψ respectively. In the subgraph of each subfigures, we
find the control force generated with MFC method (red lines) has an oscillation at the beginning of the simulation. This
is an usual phenomenon of MFC method because it need an estimation for system dynamics and it is a learning process.

Scenario 2 Complex Periodic Signal Tracking

We define two complex tracking reference trajectories for pitch angle and yaw angle,

θd(t) = 0.3 sin(1.3t) + 0.1 cos(0.9t) + 0.2 sin(1.5t), (33)
ψd(t) = 0.82 + 0.3 sin(1.6t) + 0.3 cos(0.6t) + 0.1 sin(0.8t). (34)

With control gain K, the feed-forward and the proportional integral differential (FF+PID) control voltage is added to the
pitch servo motor to regular the pitch angle θ to track the reference trajectory (33). The PID control voltage is added to
the yaw servo motor to control the yaw angle ψ to track the reference trajectory (34). The blue lines in Figure 4 and 5 are
the tracking performances of pitch and yaw angle under LQR control respectively. The red lines in Figure 4 and 5 are the
tracking performances of pitch and yaw angle with MFC method respectively. We find that the pitch and yaw angle θ and
ψ controlled with MFC has fast response and smaller tracking errors compared to the LQR method. Figures 6 and 6 show
the results of control force uθ and uψ respectively. From these two figures we can still find the oscillation phenomenon at
the beginning of simulation.

A Comparison Study
To investigate the improvement of the tracking performances, we set two evaluation functions. The two indexes will show
the tracking control performances and the energy consumption of the controller. The smaller the Jx is, the better the
tracking performances are. The smaller the Ju is, the lower energy consumption cost.

Jx =
1

T

∫ T

0

[
(θ (τ)− θd (τ))

2
+ (ψ (τ)− ψd (τ))

2
]
dτ, (35)

Ju =
1

T

∫ T

0

[|uθ (τ)|+ |uψ (τ)|] dτ. (36)

In the simulation, we set simulation time T = 50s, the two indexes Jx and Ju of LQR and MFC are list in Table 2.
Through the simulation results, we find that the MIMO nonlinear helicopter system controlled by model free control
method would track the reference trajectories very well. Compared to LQR control from Table 2, the model free control
improves the tracking performances quite a lot and the energy cost is nearly the same with the LQR control.

Conclusion

In this paper, a partial model-free output feedback controller was proposed to control a 2-DOF nonlinear helicopter system.
The control strategy was implemented partly depends on the system model. A lowpass filter technique is applied to the
differential estimation. Based on the proposed partial model-free control strategy, the linear quadratic regulator (LQR)
technique is taken to optimize the control parameters. Two scenarios are set to check the control performances. From the
study of the simulation, we find the control effects of the partial model-free control method are quite promising.
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Table 1: The helicopter system specifications

Symbol Description Value Unit
mheli total moving mass of the helicopter 1.3872 kg
lcm center of mass along helicopter body from pitch axis 0.1860 m
Jeq,p total moment of inertia about pitch axis 0.0384 kg.m2

Jeq,y total moment of inertia about yaw axis 0.0432 kg.m2

Bp equivalent viscous damping about pitch axis 0.8000 N/V
By equivalent viscous damping about yaw axis 0.3180 N/V
Kpp thrust torque constant of pitch axis from pitch propeller 0.2040 N.m/V
Kpy thrust torque constant of pitch axis from yaw propeller 0.0068 N.m/V
Kyy thrust torque constant of yaw axis from yaw propeller 0.0720 N.m/V
Kyp thrust torque constant of yaw axis from pitch propeller 0.0219 N.m/V

Table 2: The evaluation function values

Index Step-LQR Step-MFC Period-LQR Period-MFC
Jx 91.2868 82.0765 97.9797 53.4541
Ju 25.0748 25.0701 24.4156 24.2612

Figure 1: The module of 2-DOF helicopter system.
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Figure 2: The simulation results of step response for angle θ(t) and ψ(t) when tracking θd(t) = 0◦ and ψ(t) = 90◦ respectively.
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Figure 3: The control results of step response simulation. The blue lines are the LQR control forces and the red ones are model-free
control forces. The oscillations of the red lines at the beginning of the simulation in the subgraph are introduced by the estimation of
the system dynamics.
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Figure 4: The simulation results of pitch angle and tracking error when tracking the reference signal θd(t). The gree line is the reference
trajectory, the blue line is result controlled with LQR method and the red line represents the tracking performance controlled with MFC
method.
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Figure 5: The simulation results of yaw angle and tracking error when tracking the reference signal ψd(t). The gree line is the reference
trajectory, the blue line is result controlled with LQR method and the red line represents the tracking performance controlled with MFC
method.
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Figure 6: The simulation results of the control force uθ . The blue line represents the control force generated by LQR method and the
red line represents the control force generated by MFC method.
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Figure 7: The simulation results of the control force uψ . The blue line is the control force of LQR control and the red line is the control
force of model-free control.


