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Summary. Introduced by Moreau [5] the nonsmooth and setvalued framework of measure differential inclusions allows to describe
mechanical systems including friction and impacts. Existence results for the equations of motion of nonsmooth mechanics based on
this modelling approach always assume the regularity of the mass matrix and the independence of all constraints. Studies on Lyapunov
stability of this systems [4] postulate the same requirements. But in our center of interests are special applications with singular mass
matrices or redundant constraints including examples of [6]. For analytical investigations on this certain problems it is necessary to
generalize the present theory for existence and stability to the linear implicit formulation of measure differential inclusions like it was
already done for systems with bilateral constraints [3] and unilateral constraints with a finite number of impacts [1].

Mechanical systems with unilateral constraints and impact dealing with singular mass matrices

Following Glocker [2], mechanical systems with unilateral constraints and impacts can be described by a measure differ-
ential inclusion

dq = v dt, (1a)

M(q)dv = f(q, v)dt+GT (q)di, (1b)
−di ∈ NCN

(ξ)dt+NCN
(ξ)dr (1c)

ξ = G(q)(v+ + εv−), ε ∈ [0, 1] (1d)

with respect to the absolute continuous position q : [0, T ] → Rn and the velocity v : [0, T ] → Rn of locally bounded
variation with a Lebesgue decomposition for the differential measure dv = v̇dt+ (v+ − v−)dr refering to the Lebesgue
measure dt and the jump measure dr :=

∑
j δtj containing all Dirac measures δtj of the discontinuity points of v. The set

NCN
(x) defines the normal cone of all non-negative real vectors standing orthogonal to x, e.g. {y ∈ Rn : yT (x∗ − x) ≤

0,∀ x∗ ≥ 0}.

Within many publications dealing with mechanical systems the mass matrix M(q) is assumed to be positive definite,
hence non-singular. But the number of articles considering applications with singular mass matrices is steadily increasing
[6]. An existence result for positive semidefinite M(q) with the additional assumption

ker M(q) ∩ ker G(q) = {0} (2)

can be found in [1]. The physical interpretation behind this formula is that any possible movement is associated with a
positive kinetic energy. With the same condition (2) we give a generalized existence and uniqueness result for measure
differential inclusion to involve also the case of an infinite number of discontiuity points in advance to [1]. Singular mass
matrices often arise while the modelling process is simplified and structured by using non minimal coordinates. One
application is a two degree-of-freedom system of two masses connected by springs [6]. To set up the equations of motion,
it proves to be advantageous to consider two separated subsystems and connect them by a constraint q1 = x1 + d.
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Figure 1: A two degree-of-freedom multi-body system and its decomposition using more than minimal cooridinates

With the notations of Figure 1 and x̄1 = x1 − l1, q̄2 = q2 − l2 the equations of motion are obtained by m1 0 0
0 m2 m2

0 m2 m2

 ¨̄x1
q̈1
¨̄q2

 =

 −k1x̄1 − λ1 − λ2λ1
−k2q̄2

 ,
q1 − x̄1 − l1 − d = 0,

0 ≤ λ2 ⊥ L− x̄1 − l1 − d ≥ 0.
(3)

The advantage of this modelling strategy gets stronger with larger problem dimension. Based on our analytical results
this problem has a unique solution if (2) holds. This fact motivates the following stability analysis of equilibriums of
mechanical systems with singular mass matrices.
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Lyapunov stability of linear implicit measure differential inclusions

A generalized problem to (1a)-(1d) are the linear implicit measure differential inclusions

A(x)dx ∈ Γ(x) (4)

with a measure- and multi-valued right hand side and an admissible set Z = {x : Γ(x) 6= 0}. The challenge of stability
analysis of such systems is their impulsive character and the resulting state discontinuties. To pick up these properties
Leine, van de Wouw [4] define a equilibrium x∗ of (4) as stable if for every ε > 0 there exists a δ > 0 with for all starting
values x(t0) = x0 ∈ Z :

‖x0 − x∗‖ < δ ⇒ ‖x(t)− x∗‖ < ε, for almost all t ≥ t0
and all solutions x(t) of (4) to x0. For all discontinuity points of the function x the conclusion does not need to be true.
The results of [4] are restructured to apply them to the implicit formulation (4).

Theorem 1: An equilibrium x∗ of (4) is stable in the sense of Lyapunov if there exists a lower semicontinuous function
V : Rn → R ∪ {∞} and a neighborhood U := B(x∗, h) ∩ Z for a h > 0 with (i) V (x) ≥ 0,∀ x ∈ U, V (x∗) = 0, (ii)
dV (x) ≤ 0,∀ x ∈ U , (iii) the set {x ∈ U : V (x) = 0} contains only x∗.

In [4] instead of (i) even positive definiteness of V is required such that (iii) becomes no longer necessary. But this
approach is not applicable for systems with singular A(x). The contradiction proof is based on the positively invariant
property of sublevel sets of functions with bounded variation. Furthermore, Theorem 1 can be generalized to attractivity
by replacing (iii) by the condition that {x ∈ U : dV (x) = 0} contains only x∗.

Numerical test results

As in [4], the extended total mechanical energy

V (q, v) := 0.5vTM(q)v + U(q) + ψZ(q) (5)

with the positive definite U(q) with respect to q∗ and the indicator function ψ of the admissible set Z is chosen as
a Lyapunov candidate. It can be shown that (5) fulfills the assumptions of Theorem 1 if M(q) is for all q positive
semidefinite and in addition (2) is satisfied. Considering the application in Figure 1 with L = l1 + d the system has an
equilibrium point in q∗ := (x̄1, q1, x̄2) = (0, L, 0), q̇∗ = (0, 0, 0). This is stable and attractiv, i.e. every solution to any
(q0, v0) converges to (q∗, v∗) for t→∞, like it is underlined by Figure 2 showing x̄1, ˙̄x1 with different initial values.
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Figure 2: Solution components x̄1, ˙̄x1 of (3) for three different initial values underlining attractivity
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