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Experiments on Adaptive Nonlinear Model Predictive Control of a Pendulum
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Summary. This work presents the simulative and experimental application of an adaptive nonlinear model predictive control scheme
on a pendulum. The control objective is both a disturbance rejection and an accurate trajectory tracking in the presence of uncertainties,
which is realized by a cascade control structure consisting of a position control and an adaptive model predictive controller. Uncertain-
ties such as external disturbances or unmodeled dynamics are considered in the adaptive MPC design by estimating the dynamics of
the prediction model with an Unscented Kalman Filter online and based on that, adapting the optimization problem in each time step.
In order to investigate the effect of uncertainties on the performance of the proposed control structure, simulation results provided by a
fuzzy-arithmetical analysis are compared with experimental results.

Introduction

Model-based approaches for the control of mechanical systems typically lead to satisfying results. As in the presence of
model uncertainties or external disturbances some of these approaches reach their limits, adaptive control schemes are
needed in order to incorporate their effect in the control design. Adaptive control deals with the correct adjustment of
control parameters online [1], where also in the field of robotics and mechanical systems many approaches exist [13, 9].
Model predictive control (MPC) is an optimization-based control technique of increasing importance usable for wide-
spread industrial applications [7, 8]. Based on the prediction of the future dynamical behaviour of the plant, an optimal
input sequence is found by solving an optimization problem over a certain horizon. After implementing the first input
of the sequence and shifting the prediction horizon, the optimal control problem is repeated. Due to its capability of
forecasting the future dynamical behaviour and consideration of constraints like mechanical limitations, MPC is very
suitable for tracking control purposes occuring in linear and nonlinear systems. This paper presents an adaptive MPC
design, where the prediction model is updated online by a parameter estimation which is performed by an Unscented
Kalman Filter (UKF). This leads to an adaptation of the optimization problem in each time step and, thus, to a better
prediction and an improved control action. The proposed control scheme is applied to a pendulum moving in three-
dimensional space, for which both simulative and experimental investigations are made. The investigations include both
the design for the undisturbed system and a disturbed system, where two types of uncertainties are implemented in order
to verify the functionality of the presented control structures. Simulation results provided by a fuzzy-arithmetical analysis
are compared with experimental results.

Experimental Setup and Mechanical Model of the Pendulum

Experimental Setup
The pendulum, which is depicted in Figure 1, consists of a sphere at the end of a thin rod. The rod is mounted on gimbals
on a cross table consisting of three toothed belt axes. The third axis (x-direction) is mounted onto the other two axes
(y-direction) which are coupled with a shared motor and synchronised using a connecting shaft. Both carts are driven by
DC motors which enable the pendulum performing three-dimensional oscillations. The motors operate in current control
mode and receive their signals via servo amplifiers which are coupled with the real-time system dSPACE. It should also
be noted that both cart positions and both Cardan angles are measured by incremental encoders. Components of the
experimental infrastructure are shown in Figure 2.

Mechanical Model
The schematic model of the pendulum is depicted in Figure 3. The orientation of the thin rod (mass mr, inertia Ir, length
Lr) with the fixed sphere (mass ms, inertia Is) can be described by the Cardan angles α and β. The cart positions are
denoted by xc, respectively yc, and are driven by the motor torques T1 and T2. As the motors operate in current control
mode, the current signals I1 and I2 are calculated from the motor torques via the proportial dependecy Ti = kMIi.
Following the principles of Newton and Euler and d’Alembert the nonlinear equations of motion of this multibody system
can be derived

M(q)q̈ + k(q, q̇) = g(q, q̇) +Bū (1)

with the generalized coordinates q =
[
xc yc α β

]T
and the inputs ū =

[
T1 T2

]T
. The symmetric positive definite

matrixM is known as the mass matrix. The vector k summarizes the Coriolis, centrifugal and gyroscopic forces, whereby
the generalized applied forces are expressed by the vector g. The matrix B distributes the control inputs ū onto the
directions of the generalized coordinates. It should be noted that both elastic deformations of the bodies and friction in
the toothed belt axes are neglected in this model. The most important material parameters are summarized in Table 1.

Adaptive Controller Design

The controller design aims at trajectory tracking of the center of gravity of the sphere position r(q). A control law on the
basis of (1) can not be established as the toothed belt axes have non-negligible statical and dynamical frictional torques
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Figure 1: Experimental setup of the pen-
dulum.

Figure 2: dSPACE autobox (top left), servo amplifiers (top right), Cardan
joint and encoders (bottom left), DC motor (bottom right).

x
z y

yc
xc

αβ

mr, Ir, Lr

ms, Is

Figure 3: Schematic model of the pendulum.
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Figure 4: Cascade control structure with adaptive MPC.

whose mathematical descriptions are not trivial. For instance, the carts do not move without power supply, although the
pendulum is performing oscillations. Furthermore, there exist unmodeled bodies like additional masses and cables causing
unknown dynamical effects. Beside these mentioned limitations, the effect of external disturbances on the performance of
the controller should be as small as possible which leads to the choice of an adaptive control structure. Control approaches
for the pendulum in the presence of no uncertainties can be found in [12, 10].

Cascade Control
An effective way to compensate these frictional effects and the uncertainties in the model is the use of a cascade control
structure which is depicted in Figure 4. The inner loop is controlled by a fast PD controller to guarantee the accordance
of the target and the actual cart position. The control target of the outer loop is the robust trajectory tracking of the sphere
position, wherefore an adaptive MPC is designed. As the original states xc, yc are now control inputs, a new dynamical
model has to be derived which is the basis for the controller design of the outer loop. For this purpose (1) is partitioned
and rewritten with the appropriate dependencies[

M11 M12(q2)
MT

12(q2) M22(q2)

] [
q̈1

q̈2

]
+

[
k1(q2, q̇2)
k2(q2, q̇2)

]
=

[
g1(q2, q̇2)
g2(q2, q̇2)

]
+

[
B1

0

]
ū (2)

with the partitioned generalized coordinates q1 =
[
xc yc

]T
and q2 =

[
α β

]T
. Defining the new input u := q1 the

lower part of (2) denotes the reduced equations of motion and can be rewritten as

M22(q2)q̈2 + k2(q2, q̇2) = g2(q2, q̇2)−MT
12(q2)ü (3)

Table 1: Some material parameters of the pendulum.

parameter mass mr inertia Ir,x length Lr mass ms inertia Is,x,y,z

value 1.1 kg 0.0525 kgm2 1.12 m 4.05 kg 0.095 kgm2
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which describes the dynamics from the cart accelerations to the Cardan angles. It is here appropriate to linearize (3)
and the sphere position r(q) with respect to their lower equilibrium point qs =

[
0 0 0 0

]T
and us =

[
0 0

]T
as

the sphere is desired to oscillate around its equilibrium. After Jacobian linearization and time discretization the obtained
equations can be stated in discrete state space form

xk+1 = Axk +Buk, (4)
yk = Cxk +Duk (5)

with the input vector u =
[
xc yc

]T
and the output vector y representing the sphere position. It is worth to mention

that the state vector x contains non-physical variables. The reason for this is that (3) is influenced by the acceleration ü,
whereas (4) and (5) are supposed to be controlled by the position u. Therefore, the system has to be stated in controllable
canonical form and consequently loses the physical meaning of its states. It should also be noted that the feedthrough
term D is non-zero due to the fact that the sphere position is directly influenced by the cart positions. The dynamics of
the linearized equations of motion is discretized as the MPC is typically based on a time-discrete state space model given
by (4) and (5).

Adaptive Linear Model Predictive Control Algorithm
Before establishing the adaptive MPC scheme, the idea behind MPC is very briefly introduced. Based on the prediction
of the future dynamical behaviour of the plant, an optimal input sequence is found by solving an optimization problem
over a certain horizon. After implementing the first input of the sequence and shifting the prediction horizon, the optimal
control problem is solved again, see [7]. The optimal control problem is given by minimizing the quadratic cost function

J =

k+P−1∑
i=k

∣∣∣∣yi − yd,i
∣∣∣∣2
Q

+
∣∣∣∣∆ui

∣∣∣∣2
R

(6)

over the input trajectory ∆U =
[
∆uT

k · · · ∆uT
k+M−1

]T
considering the system dynamics (4) and (5) and constraints

on the input u. The prediction horizon P defines the number of future time steps over which the dynamics is predicted,
whereas the control horizon M defines the dimension of the optimization variable U . The weighting matrices Q and R
are tuning parameters in order to define the control objective. The accuracy can be adjusted byQ penalizing the deviation
from the reference trajectory yd, whereas the aggressivity of the controller can be tuned by R. In order to solve the
optimal control problem min∆U J and to obtain the optimal solution ∆U∗, all variables of the cost function (6) have to
be expressed through the optimal input trajectory ∆U . This can be achieved by predicting the next P outputs yk through
the system dynamics (4) and (5) and by considering the input relationship uk = ∆uk + uk−1. Then, the optimal control
problem can be transformed into the linear-quadratic optimization problem

∆U∗ = arg min
∆U

{
1

2
∆UTH∆U +

[
xT
k Y T

d uT
k−1

]
F∆U

}
(7)

with the future P reference trajectory values Yd =
[
yT

d,k · · · yT
d,k+P−1

]T
, the previous input uk−1 and the current

measurement xk. The numerical solution of the optimization problem is obtained by the open-source C++ software
qpOASES [2] which makes use of an online active set strategy. The state xk is non-physical and consequently can not be
measured. Recapitulate that the pendulum angles and the cart positions can be measured by incremental encoders. Thus,
a Kalman Filter is used to estimate the current state xk from the available measurements and the previous input variable
which is needed for the optimization problem (7). Taking the first entry ∆uk of the optimal input trajectory ∆U∗, the
control input is computed by uk = ∆uk + uk−1. After implementing the control input uk and shifting the prediction
horizon over one time step, the whole procedure is repeated with a new measurement.
Linear MPC (LMPC) relies on the accurate prediction of the future system dynamics by (4) and (5). The question
arises whether the proposed scheme can cope with external disturbances or unmodeled dynamical effects. Beside these
effects there is also a discrepancy between the real dynamics and the dynamics of the prediction model (4) and (5)
as these equations are obtained by Jacobian linearization. In order to incorporate the mentioned uncertainties in the
control design, an adaptive MPC scheme is introduced. It is the main idea of the adaptive MPC scheme, to solve an
optimal control problem on the basis of a prediction of the future dynamical behaviour with a model which is updated
online. Consequently, the optimization problem is adapted which leads to a consideration of parametric uncertainties
and unknown disturbances in the control design and thus, to a better forecast of the future states. The following ideas
are based on [11] with the main difference that these contribution deals with an adaptive control scheme of combining
feedback linearization and LMPC and updating the exactly feedback linearized model. Nevertheless, all strategies have
in common that a Kalman Filter is used for the online parameter adaptation of the prediction model. Therefore, the
prediction model (4) and (5) is extended in order to incorporate the influence of uncertainties on the matrices A and B,
and can be stated as

xk+1 = (A+ ∆A)xk + (B + ∆B)uk, (8)
yk = Cxk +Duk (9)
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with the matrices

∆A =


0 0 0 0
0 0 0 0
θ1 0 θ3 0
0 θ2 0 θ4

 , ∆B =


0 0
0 0
θ5 0
0 θ6

 (10)

containing the unknown parameters θT =
[
θ1 · · · θ6

]
. The depicted structure is chosen in that way due to the fact that

in mechanical systems parameter variations usually have a direct influence on the accelerations. Parameter estimation can
be transferred to state estimation by extending the state vector x with the parameter vector θ and introducing the extended
state vector xT

e =
[
xT θT

]
. Assuming constant parameters θk+1 = θk and from (8) and (9) consequently follows the

nonlinear difference equation

xe,k+1 = f(xe,k,uk) + ξk, (11)

yk =
[
C 0

]
xe,k +Duk + ηk (12)

with process noise ξk and observation noise ηk. As the transfer behaviour in (11) from u to y is nonlinear, online
estimation is realized by applying an UKF, see [6], in order to incorporate the nonlinearities. Unlike the Extended Kalman
Filter (EKF), the UKF does not approximate the nonlinear process and thus, does not need any derivatives and is more
accurate. The UKF is based on a deterministic sampling approach, where chosen sample points are propagated through
the nonlinear system by an unscented transformation and capture the posterior mean and covariance accurately to the
third oder. A detailed description of the UKF’s algorithm can be found in [6] and [14]. Recapitulate that the prediction
model (8) is updated online and leads to a more accurate approximation of the dynamics. As a consequence, the quadratic
programming matricesH(θ), F (θ) from (7) depending on the system matrices and the parameters θi are updated in each
time step. The proposed control structure including cascade control and adaptive MPC is depicted in Figure 4.

Linear Model Predictive Control Algorithm with Disturbance Rejection
Beside the adaptation of the prediction model, uncertainties can also be considered in the control algorithm by assuming
them to be external disturbances. Unlike the presented adaptive MPC, the prediction model is now kept constant. Here,
the assumed external disturbances have to be estimated online in order to take corrective control actions. The algorithm
is based on the discrete linear state space model

xk+1 = Axk +Buk +Edk, (13)
yk = Cxk +Duk (14)

which is influenced by an external disturbance dk distributed onto the states by the matrix E. In the same way as the
other scheme, the control input is obtained by minimizing the quadratic cost function (6) over the input trajectory ∆U .
The difference lies in the fact that the next P system outputs yk are predicted on the basis of the system dynamics (13)
and (14). Consequently, the linear-quadratic optimization problem

∆U∗ = arg min
∆U

{
1

2
∆UTH∆U +

[
xT
k Y T

d uT
k−1 dT

k−1

]
F∆U

}
(15)

depends on the external disturbance d and thus, can take corrective action in order to minimize its influence on the tracking
behaviour. The current disturbance d on the system has to be estimated online, which is achieved by extending the state
vector xT

e =
[
xT dT

]
. Assuming white noise on the process ξk and on the measurement ηk, the linear difference

equations follow

xe,k+1 =
[
A E

]
xe,k +Buk + ξk, (16)

yk =
[
C 0

]
xe,k +Duk + ηk. (17)

The states xe,k and consequently the disturbances dk can be estimated online by applying a Kalman Filter. The use of an
UKF is not necessarily needed as the dynamics fromu to y is linear. It is worth to mention that the quadratic programming
matricesH and F are constant as the system matrices are independent uncertainties.

Fuzzy-Arithmetical Uncertainty Analysis

As uncertainties in mechanical systems often result from a lack of knowledge and an inexact parameter determination, they
are assumed as epistemic uncertainties and can be implemented as fuzzy numbers [5]. Fuzzy numbers can be integrated
into multibody systems by fuzzy arithmetics which allows to make reliable statements concerning stability, performance,
and practicability of the proposed control structures. As the dynamics of the control structure is considerably influenced
by the uncertain model parameters, dealing with fuzzy numbers requires their systematic use in the dynamical analysis.
A fuzzy number is defined as a convex fuzzy set with a membership function µ(x) ∈ [0 1] only being equal to one for the
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Figure 5: Fuzzy-valued sphere position rx (left) and cart position xc (right) of MPC , of adaptive MPC and of MPC
with disturbance rejection .

nominal value. In this contribution, the uncertain system parameters are described as symmetric triangular fuzzy numbers
p̃i with the membership function

µ(x) =


1 + (x− p̂i)/(αip̂i), for (1− αi)p̂i < x ≤ p̂i,
1 + (x− p̂i)/(αip̂i), for p̂i < x < (1 + αi)p̂i,

0, otherwise,
(18)

where p̂i denotes the nominal value of the i-th parameter and αi describes its deviation. A multibody simulation with fuzzy
numbers p̃i, given by their membership functions µp̃i

(xi), can generally be described by a mapping q̃ = f(p̃1, ..., p̃n),
where q̃ is for instance the fuzzy system output. The extension principle shows a way how to determine the membership
function µq̃(y) of the result q̃. An efficient implementation can be realized by the transformation method [4], where the
calculations are performed in terms of α-cuts. In addition, the method provides a way to quantify the effect of each fuzzy-
valued parameter on the uncertainty of the system output by influence measures [3]. Providing systematic tools to analyze
the influences of parameter uncertainties, the fuzzy-arithmetical analysis allows a better understanding of the dynamical
behaviour of mechanical systems. It should be emphasized that the adaptivity in the control design is utilized by the UKF
online, whereas the fuzzy-arithmetical analysis is only used to analyze the functionality and performance offline.

Simulative and Experimental Results

Both proposed control schemes are applied to the pendulum depicted in Figures 1 and 3. Detailed simulative and experi-
mental investigations in the presence of two different types of uncertainties are made in order to verify the functionality of
both adaptive schemes. The tuning procedure of the MPC is performed with a focus on both accurate trajectory tracking
and possible application on the hardware yielding the weighting matrices Q = diag(10, 10) and R = diag(80, 80). The
prediction horizon P = 70 is chosen quite long compared to the control horizon M = 10 in order to reduce the optimiza-
tion problem and simultaneously to guarantee a good forecast of the dynamics, whereby the sampling time is chosen to
be ∆t = 10 ms. In order to make comparisons between the different schemes, all controllers have the same described
tuning parameters.
First, to verify the disturbance rejection, an external disturbance d =

[
d d d

]T
is assumed which represents an external

force pulse acting on the center of gravity of the sphere position in x-, y- and z-direction. The disturbance value d can be
described over the time t by the function

d(t) = p̃1 exp

(−(t− 1)2

2 · 0.32

)
, 0 s ≤ t ≤ 6 s (19)

with its maximal value given by the triangular fuzzy number p̃1 which is defined through its nominal value p̂1 = 5 N
and its variation α1 = ±100% like in (18). In the following, adaptive MPC is referred to as the control structure with
the updated model (8), whereas MPC with disturbance rejection is the control structure with disturbance estimation and
rejection. The results of the MPC with the nominal model without disturbance rejection are denoted by MPC. Figure
5 displays the fuzzy-valued simulation results of the sphere position rx and of the related cart position xc, where the
pendulum starts in its lower equilibrium position and is disturbed by the external force (19). Both fuzzy-valued results
are characterized by a set of possible solutions, where the membership values µ are indicated by their coloring. The
nominal solution is given by the membership value µ = 1 and is represented by the strongest colour. It can be seen that
the external disturbance has a great impact on the sphere position which is deflected from its equilibrium up to 30 cm.
The results demonstrate a significant difference in the disturbance rejection between the MPC schemes. It is obvious
that the non-adaptive MPC has the worst rejection behaviour which can be significantly improved by the adaptive MPC
reacting to the external disturbance by changing its prediction model. The MPC with disturbance rejection has by far the
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Figure 6: Circular reference trajectory rd for the sphere po-
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Figure 7: Sphere of the pendulum with an additional mass
connected to the sphere by a spring.
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Figure 8: Simulative (left) and experimental (right) quadratic tracking error er = ‖rd − r‖22 of MPC , of adaptive
MPC , and of MPC with disturbance rejection .

best rejection behaviour. This is caused by the fact that the value of the external pulse is estimated online and is taken
into account by the optimization problem (15). As a consequence, the carts act earlier and more appropriate leading to a
satisfying suppression which is shown by both plots of Figure 5.
Furthermore, the tracking behaviour in the presence of uncertainties is investigated. The reference trajectory rd for the
sphere position consists of a circular motion with an amplitude of 30 cm which is depicted in Figure 6. As the average
calculation times of all three algorithms for one time step are smaller than the chosen sample time ∆t = 10 ms, simulative
and experimental investigations can be made. To verify the tracking capability of all control schemes, both simulative
and experimental quadratic tracking errors er are depicted in Figure 8 under the assumption of no additional disturbances.
Both plots approve the functionality of all schemes both for simulation and hardware. Nevertheless, especially the sim-
ulation results show that the tracking error is strongly reduced by those MPC schemes considering uncertainties in their
algorithm. The reason for this is that due to Jacobian linearization there is a discrepancy between the real dynamics and
the dynamics of the prediction model for the MPC. The adaptive MPC closes this discrepancy by an adaptation of its
dynamics, whereas the MPC with disturbance rejection considers this discrepancy as an external disturbance. In order to
demonstrate the effect of unmodeled dynamics on the control schemes, the pendulum is disturbed with an additional mass
which is connected to the sphere by a spring, see Figure 7. The pendulum can now be seen as a double pendulum with
three additional degrees of freedom as the spring is universal-mounted to the bottom of the sphere. Note that the weight of
the additional massma = 1 kg is relatively high compared to the mass of the sphere and the rodmres = ms+mr = 5.15 kg
and, thus, significantly influences the dynamics of the pendulum. In order to quantify the influence, the additional mass
ma is implemented as a triangular fuzzy number p̃2 which is defined through its nominal value p̂2 = 1 kg and its vari-
ation α2 = ±100%. Figure 9 depicts the simulation results of the fuzzy-valued quadratic tracking error. It can be seen
that all three controllers can cope with the additional unknown dynamics, whereas both adaptive MPC and MPC with
disturbance rejection further reduce the tracking error. As the adaptive MPC has the capability to adapt its dynamics to
the new environment online, it becomes clear that it shows best tracking behaviour which is also confirmed by Figure 8.
The simulation results are verified by the experimental results shown in Figure 10. As it can be seen from the left plot, the
amplitude of the sphere position of 30 cm can only be sufficiently tracked with the use of the adaptive schemes, whereas
the nominal MPC scheme exhibits a remaining offset. This is caused by the fact that, in case of adaptive schemes, the
amplitudes of the cart position xc are slightly larger than in the nominal case which drives the sphere position to the exact
trajectory. The unknown model parameters θi of the adaptive MPC are exemplarily shown in order to demonstrate that
these parameters vary over the time. Although the parameters have no physical meaning, one can follow that parts of the
disturbed dynamics are correctly represented by the prediction model (4) as the parameters θ1 and θ2 remain zero.
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Figure 9: Fuzzy-valued quadratic tracking error er = ‖rd − r‖22 of MPC , of adaptive MPC and of MPC with
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Figure 10: Experimental results of pendulum with additional mass: sphere position r (left), cart position xc (middle), and
estimated model parameters θi (right) of MPC , of adaptive MPC , and of MPC with disturbance rejection .

Conclusions

The simulative and experimental application of an adaptive MPC scheme for a three-dimensional pendulum has been
presented. A cascade control structure is chosen consisting of a fast position control and an adaptive MPC in order to
cope with uncertainties in the motors. The adaptive MPC is based on an online-adaptation of the prediction model which
is realized by an UKF. Fuzzy-arithmetical simulation results and experimental data have demonstrated an improvement
with the adaptive MPC compared to the nominal MPC both in disturbance rejection and trajectory tracking in the presence
of different uncertainties. As the nominal MPC also leads to acceptable results, the choice between the nominal and the
adaptive MPC depends on the control objective and the type and value of the uncertainty.
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